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Resumo

O objetivo desta tese de mestrado é criar um modelo, baseado em dados reais, capaz de prever a

potência de saı́da de um parque eólico. Inicialmente, foi adoptada uma metodologia baseada em con-

ceitos fı́sicos, usando modelos de modelação do efeito esteira disponı́veis na literatura. Os resultados

obtidos não foram aceitáveis. Foram estudadas as razões da falha deste modelo na produção de re-

sultados fiáveis e apresentam-se sugestões de possı́veis melhorias para trabalhos futuros. A criação

de um segundo modelo, o modelo empı́rico, é então descrita. Os novos resultados são apresenta-

dos e analisados de modo a compreender as suas vantagens e inconvenientes e sugere-se aonde

atuar de modo a obter-se um modelo mais preciso. Como passo seguinte, sugere-se um número de

equações capazes de prever a potência de saı́da de uma turbine isolada baseado na velocidade e

direção do vento. Os resultados desta abordagem são depois discutidos. Finalmente, numa tentativa

de diminuição do erro de predição, apresenta-se uma terceira abordagem que permite determinar dire-

tamente a potência de saı́da usando apenas a velocidade e direção do vento. Este modelo é comparado

com o modelo empı́rico.

Palavras-chave: Modelo para efeito de esteira, parque eólico, previsão, energia eólica, mod-

elo empı́rico.
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Abstract

The goal of this Master’s thesis project is to create a model that is able to predict the power output

of the wind farm based on actual measurements. Initially, a physical approach was used by studying

and implementing wake models available in literature. Then, its results and reasons why it failed to

produce an accurate prediction are studied, trying to suggest possible improvements for future work on

similar topics. Afterwards, the creation of a second model based on empirical data is described. The

new results are subsequently uncovered and described in order to understand its pros and cons and

suggest where to act in order to possibly obtain a more accurate model. As a next step, a number of

approaches for the creation of a set of equations able to predict the power output of a single turbine

using only wind speed and direction as inputs are suggested. The results of each single approach are

then exposed. Finally, a third model predicting directly the power output based on the wind speed and

direction is formulated in an attempt to decrease the error in the prediction. The outcome of this last

model is finally shown and compared with the results from the empirical one.

Keywords: wake model, wind farm, prediction, wind energy, empirical model
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Chapter 1

Introduction

1.1 Motivation

Wind energy is continuously increasing its share of installed power and energy produced worldwide.

However, because of the stochastic nature of the wind resource, it results difficult to predict the power

output of a wind farm. This element creates problems to the management teams when they have to sell

their energy in the market. Creating a model that predicts the output of the wind farm would help them

in this aspect and consequently give additional stability to the grid.

1.2 Topic Overview

Extensive effort was put into determing the wake effect of adjacent turbines within the farm. The existing

wake models estimate a normalised velocity deficit (∆U ) which is later subtracted from the value of the

undisturbed wind speed (U∞), according to equation (1.1). Using one of these wake models, the wind

velocity profile in the wind farm is studied and used to predict the overall power output.

u = U∞ · (1−∆U) (1.1)

The layout of the wind farm on which the model is employed is shown in Figure 1.1, where the North

is upwards. Afterwards, a new model based on a statistical analysis of empirical data is created. Also,

the reasons that brought to the creation of this second model are analysed. Finally, in an attempt to

decrease the error of the prediction a third and final model is proposed. The results of these two other

models represent the best results of the project and therefore its core part. In Figure 1.2, the wind rose

relative to the data available and therefore relative to 2016 is shown.
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Figure 1.1: Layout of the wind farm where the models are employed

1.3 Data

The data used for the calculations were provided by the management team of the wind farm. The data

covered the 12 months of 2016 in 10 minute increments. For each time slot and for each physical quantity

described, the maximum, minimum and mean values were provided, together with the relative standard

deviation. The data was from sensors placed on each turbine within the farm and 2 met masts also

on site. The met masts were used mainly in an attempt to improve the second model (as explained in

Section 5.10) because their data was deemed unrealible to describe the incoming wind (Section 3.5.1).

The characteristics coming from the anemometers of the wind turbines that were mainly used were the

wind speed and direction. The direction was described starting from North (which is therefore indicated

as 0◦ ) and going clockwise (consequently, East is 90◦ ). The data from any single turbine was deemed

realiable since it matched fairly well with turbines within close proximity. As such the farm provided

enough individual data sets to ensure the overall validity of the data provided. However, one year is not

enough to properly describe the behaviour of the wind in the site. In fact, the data coming from a single

year might be affected from particular and unique conditions verified during it.

1.4 Objectives

The objective of this project is to create a model that is able to predict the power output according to the

conditions of the wind entering the wind farm. In order to create this model, 9 out of the 12 months of
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Figure 1.2: Wind rose relative to the data provided by the wind farm management

data available will be used for the training, while the remaining 3 will be predicted with the model itself

to verify its validity. Different approaches are used in order to obtain this model, e.g. both a physical

and a statistical path are followed. The physical approach models the effects of the wake based on

equations, while the statistical one uses real world data to determine an underlying relationship. Among

the approaches used, two managed to produce some results and were able to predict the power output

of the 3 simulated months. The second model (uncovered in Chapter 5) produced a prediction for each

month which Mean Absolute Errors relative to the time slot of 10 minutes (in which the data is organised)

vary between 1153.73kWh and 1821.21kWh. On the other hand, the third model (exposed in Chapter 7),

simulated the three months with Mean Absolute Errors ranging between 1051.10kWh and 1585.75kWh.

After creating the model, the goal was to create a way for the wind farm management team to easily

implement the model and to use its results. This way has initially thought to be a set of equations

that would reproduce the behaviour of each wind turbine. Having an equation for each wind turbine

would allow for implementation even when nearby turbines were out of order. Eventually, given the last

approach proposed, the results are simply represented in a table indicating the power output depending

on wind speed and direction.

1.5 Thesis Outline

The thesis is organised in 8 chapters overall, including the introduction and the conclusions. In Chapter

2, the theory behind the wake models and the wake models themselves are explained. In Chapter

3 and Chapter 4 the creation of the model based on the analysis of the wake and its results (and

shortcomings) are exposed, respectively. Given the lack of consistency in the results, a second model

and the new results are displayed in Chapter 5. Subsequently, the creation of the set of the equations

reproducing the power output of the turbines is uncovered in Chapter 6. In order to decrease the error in
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the prediction phase, a third model predicting directly the power output of the whole wind farm is created.

The rationale behind this final model is exposed in Chapter 7. Finally, the conclusions of all the work

carried out are explained in Chapter 8.
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Chapter 2

Background

An extremely important aspect that influences the power output and the layout of a wind farm is the wake

effect. When wind is converted into electricity, a wake characterised by a lower wind speed is created

behind the rotor, there is therefore a speed deficit within this wake. As the downwind distance from the

turbine increases, the deficit decreases and the wind speed reaches values extremely near, if not equal,

to the one measured in the undisturbed air. Through the years, several models have been studied so

that it would be possible to predict such a deficit. As usual, the complexity of the model increased with

every new model.

2.1 Wake Models

2.1.1 Jensen Model

The first approach to the creation of a wake model was proposed by N.O. Jensen [1]. His model was

then further studied and improved by I. Katic [2], bringing it to its present form. The Jensen model is also

known as PARK model [3] and it is still widely used. In fact, WAsP (a software used for several purposes

in the wind energy industry) uses the Jensen model for the wake estimations [4] [5].

The Jensen model aims to calculate the deficit inside of the wake based only on the downwind

distance, once that the turbine characteristics have been determined. This is possible thanks to the

assumption of axial symmetry within the wake. Therefore, the deficit is constant with the distance from

the centreline of the wake and is consequently defined as a “top hat” model. Because of that, the

Jensen model is defined as a one-dimensional (1D) model if we consider only the space aspect. Jensen

proposed a linear expansion of the wake, based on the wake decay coefficient k. The value of the wake

decay coefficient k varies with the turbulence and with the atmospheric stability, but generally the values

used are 0.075 for onshore sites and 0.04 for offshore ones [4]. These values are also used in WAsP.

However, further studies have been carried out and other formulations for k have been found (e.g. [4]).

Yet, there are still doubts whether in large wind farm the value of the wake decay coefficient must be

higher or not. Figure 2.1 below and equation (2.1) describe the expansion of the wake behind the rotor.
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Figure 2.1: Expansion of the wake behind the turbine according to the Jensen model (modified from [2])

Dw = D · (1 + 2 · k · s) (2.1)

s = x/D is the distance from the rotor normalised by the diameter.

The wake is divided in two different regions according to the downstream distance from the rotor.

The two regions are called near wake region and far wake region. The distance at which the transition

from the near to the far one varies depending on the publication. Usually, its value ranges between 2

and 4 rotor diameters. For example, in [6] the far wake region is defined as the part of the wake which

is further than 3 rotor diameters. The Jensen model is used to describe the wind speed in the far wake

region. Using the notation shown in Figure 2.1, the speed within the wake is represented by equation

(2.2):

u = U∞ ·

[
1− 1−

√
1− CT

(1 + 2 · k · s)2

]
, (2.2)

where CT is the thrust coefficient of the turbine.

2.1.2 Ainslie Model

Another attempt to describe the wake created by a wind turbine was made by J. F. Ainslie in 1988 [8].

This model (known both as the Ainslie model and as the Eddy Viscosity model) is a two-dimensional

field model, which means that it is able to describe the wind field of a regular wind farm by assuming

axial symmetry inside the wake. Thanks to this assumption, the model is simplified because the number

of equations needed to be solved using this assumption decreases compared to the case without axial

symmetry. The Ainslie model is based on time averaged Navier-Stokes equations for an incompressible

flow. Other important assumptions made were a stationary and fully turbulent wake with circumferential

velocity equal to zero and negligible pressure gradient within the wake. The approximation of the Navier-

Stokes equation used in this model is reported in (2.3).
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Figure 2.2: Speed deficit behind the rotor according to the Jensen model (modified from [7])

u
∂u

∂x
+ v

∂u

∂r
= −1

r

(ru′v′)

∂r
, (2.3)

where:

• u is the downstream velocity

• x is the downstream distance from the rotor

• v is the radial velocity

• r is the radial distance

• u′v′ is the Reynolds stress and defined as in (2.4)

− u′v′ = ε(x)
∂u

∂r
, (2.4)

where ε is the eddy viscosity, found as the sum of the eddy viscosity of the atmospheric flow εa and

the one produced by the wind shear in the wake εw.

ε(x) = εa + εw(x) , (2.5)

with:

εw(x) = kl · b · (U∞ − uc(x)) , (2.6)

where kl is a constant equal to 0.015, b is the wake width and (U∞−uc(x)) is the velocity deficit along

the centreline.
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Just like the Jensen model, the Ainslie model is studied in order to be used in the far-wake region,

which according to Ainslie himself begins between 2 and 4 rotor diameters behind the turbine [8].

The main objective of this model is not to provide an easily-applicable model (like the Jensen model),

but to thoroughly describe the behaviour of the wake behind a turbine [9]. A representation of this

behaviour is shown in Figure 2.3.

Figure 2.3: Speed deficit behind the rotor according to the Ainslie model (modified from [7])

2.1.3 Larsen Model

The Larsen model was proposed in different stages: the first version was published in 1988 [10], then

an improved version was presented at the European Wind Energy Conference and Exhibition of 1996

[11] and eventually the present version was revealed in 2009 [12]. This model is implemented into the

software WindPRO in two different versions.

The radius of the wake at a specific downstream distance x is defined in equation (2.7).

Rw(x) =

(
105c21

2π

)1/5

· (CT ·A(x+ x0))1/3 , (2.7)

with:

x0 =
9.6D(

2R9.6

kD

)3
− 1

, (2.8)

c1 =

(
kD

2

)5/2(
105

2π

)−1/2
(CT ·A · x0)−5/6 , (2.9)

where:
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k =

√
m+ 1

2
, (2.10)

m =
1√

1− CT

, (2.11)

R9.6 is the radius of the wake at 9.6 diameters of downstream distance from the rotor and is empiri-

cally defined as:

R9.6 = a1 · exp
(
a2 · C2

T + a3 · CT + a4

)
· (b1 · ε+ 1) ·D , (2.12)

with ε representing the ambient turbulence and a1, a2, a3, a4 and b1 are numerical coefficients ob-

tained in an empirical way.

The speed deficit ∆U is given by the sum of two terms of the first and second order, respectively

∆U1 and ∆U2, as shown in equation (2.13).

∆U(x, r) = ∆U1(x, r) + ∆U2(x, r) (2.13)

However, the second term can be neglected and the speed deficit will be:

∆U(x, r) = ∆U1(x, r) = −U
9
·
(
CT ·A·(x+x0)−2

)1/3
·

[
r3/2·

(
3·c21·CT ·A(x+x0)

)−1/2
−
(

35

2π

)3/10(
3·c21

)−1/5]2
(2.14)

The Larsen model tries also to describe the near-wake region with two possible approaches, one of

the first order (Figure 2.4(a)) and one of the second order (Figure 2.4(b))

(a) First order approximation (b) Second order approximation

Figure 2.4: Speed deficit behind the rotor according to the Larsen model (modified from [7])

2.1.4 Frandsen Model

Another model that can be used for the study of the wake behind a wind turbine is the Frandsen model,

presented in 2006 [13]. This model has been studied to predict the overall behaviour of large offshore
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wind farms with rectangular shape and constant distance between rows. Just like the Jensen model, the

Frandsen model is also characterised by a top-hat profile, as it can be seen in Figure 2.5.

In the original article the diameter of the wake is defined as shown in equation (2.15). However,

following further studies it has been found that it is better described by equation (2.17).

Dw(x) = D ·
(
βn/2 + α · s

)1/n
, (2.15)

with n = 2, α = 0.7 and β defined by:

β =
1 +
√

1− CT

2 ·
√

1− CT

. (2.16)

The more recent definition for the wake diameter however is the following one [14]:

Dw(x) = D ·max[β, α · s]1/2 (2.17)

The parametre β is also used to describe the area of the wake just after the expansion through the

rotor (Aw,0).

Aw,0 = A · β (2.18)

The wind speed within a single wake is assumed constant with the radius and is defined in equation

(2.19) and shown in Figure 2.5.

u =
U∞
2
·

(
1±

√
1− 2 · A

Aw
· CT

)
(2.19)

Where + is used when CT ≤ 0.75 and − when CT > 0.75.

2.1.5 Gaussian Wake Model

This very recent model was formulated in 2014 and uses a new approach to the problem [15]. This

new approach was used because in the far-wake region the speed deficit inside the wake is similar to a

Gaussian curve in the radial direction [3]. The Gaussian Wake Model (sometimes indicated as GWM)

has its foundations in the laws of mass and momentum conservation. The speed deficit is calculated

with the following equation:

∆U = C(x) · exp
(
−r2

2 · σ2

)
. (2.20)

In equation (2.20), σ is the standard deviation of the speed deficit at the downstream distance x,

while C(x) is estimated with equation (2.21):

C(x) = 1−

√
1− CT

8 · (σ/D)2
(2.21)
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Figure 2.5: Speed deficit behind the rotor according to the Frandsen model (modified from [14])

σ

D
= k∗s+ ε (2.22)

where k∗ = δσ/δx is the expansion rate of the wake, assumed to be linear, and ε is the value of σ/D

when x tends to 0.

By substituting (2.21) and (2.22) in (2.20), the final formulation of the speed deficit is obtained:

∆U =

(
1−

√
1− CT

8(k∗s+ ε)2

)
· exp

(
− 1

2(k∗s+ ε)2

[(z − zh
D

)2
+
( y
D

)2])
(2.23)

where z and y are respectively the vertical and horizontal coordinates and zh is the height of the hub

of the turbine. Therefore, the deficit purely depends on k∗, a site-dependent parametre that varies with

the surface roughness and the turbulence intensity.

The behaviour of the deficit inside the wake is graphically shown in Figure 2.6

2.2 Wake Combination Models

The majority of the wake models available are single wake models, which means that further calculations

are needed in order to apply them in case of a wind farm. One of the difficulties to overcome when

combining single wake models is that the deficit created by the wakes of the turbines in front varies with

the distance from the centreline of the wake, r. This problem can also happen with single wake models

(e.g. Larsen model). In case the deficit is not constant with r, the wind speed passing through the rotor

has to be averaged in order to estimate the power output using the power curve. In order to obtain this

average speed value the equation (2.24) [16] can be used:
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Figure 2.6: Speed deficit behind the rotor according to the GWM [3]

(U∞ − urotor)2 =
1

A

∫
rotor

(U∞ − uw)2dA (2.24)

Where uw is the non-uniform wake velocity, which depends on the magnitude and the sense of the

vector ~r.

2.2.1 Merging of Multiple Wakes

The main issue that is encountered when a single wake model is used for a whole wind farm is merging

multiple wakes in order to obtain a single global deficit. There are four different models that have been

tested and therefore can be used to merge multiple wakes: simple linear superposition, quadratic su-

perposition, superposition within the Dynamic Wake Meandering (DWM) approach and the Larsen wake

superposition approach [17]. In addition to these, there is also the approach of considering only the

largest deficit among the ones produced by the wakes [18].

Linear Superposition

With this model, the total deficit at the nth + 1 rotor is found from the linear superposition of the previous

n wakes at that location (indicated as x(n+ 1)). Such a concept is expressed in equation (2.25):

∆Un+1 =

n∑
j=1

(
∆U j |x(n+1)

)
(2.25)

Quadratic Superposition

The quadratic superposition is widely used and was proposed by Katic to improve the Jensen model [2].

This model is also suggested in several different articles (e.g. [19]) and it is used in the PARK program.
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The quadratic superposition is defined as follows:

∆Un+1 =

√√√√ n∑
j=1

(
∆U j |x(n+1)

)2 (2.26)

Superposition Within the Dynamic Wake Meandering Approach

The superposition within the Dynamic Wake Meandering approach (phenomenon exhaustively explained

in [20]) assumes that the wakes intercepting the rotor are independent of each other. Consequently, they

are defined using the same inflow conditions, which are the mean wind speed and turbulence field. The

overall deficit according to this model is estimated using equation (2.27):

∆Un+1(t) = max
(
∆U i(t)

)
|x(n+1) (2.27)

In equation (2.27), i varies between 1 and n and represents an upstream turbine, while t is the time

instant.

Larsen Wake Superposition Approach

In the Larsen wake superposition approach, the contribution of each single wake is calculated under

unsteady inflow conditions, which means that the upstream wakes are considered [21]. The flow field at

the location of a given turbine (indicated as x) is estimated using a linear summation of the contributions

of each single wake. The instantaneous flow field U(t) at the location of the nth + 1 turbine is estimated

with the following equation:

Un+1(t) = U0 +

n∑
j=1

(
Uj(t)|

Ũj(t)

x(n+1) − Ũj(t)
)

(2.28)

Every single contribution Uj(t) is calculated at the same location x(n+1). Ũj(t) represents the inflow

condition at the instant t and is calculated according to equation (2.29):

Ũj(t) = U0 +

j−1∑
i=1

(Ui(t)|x(j) − U0) (2.29)

2.3 Forecast Models

Since the power output of a wind turbine depends purely on the wind conditions, wind forecasts are an

extremely important aspect for a wind farm. Knowing the wind conditions in advance allows for a better

prediction of the future output and consequently, it can help the stability of the grid. Generally speaking,

the forecasting methods used to predict the wind conditions can be divided into six groups [22]:

• Persistence method

• Physical method
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• Statistical method

• Spatial correlation method

• Artificial intelligence method

• Hybrid approach.

Forecasting models can also be categorised depending on the time-scale they work with. In this

case they can be divided into 4 additional classes [22]:

• Ultra-short-term: the time-scale varies between few minutes and 1 hour

• Short-term: it varies between 1 hour and several hours

• Medium-term: between several hours and 1 week

• Long-term: between 1 week and 1 year or more.

2.3.1 Persistence Method

The persistence method is the simplest method of the ones listed above. It is based on the assumption

that the wind conditions will be the same of the moment in which the forecast is made. This assumption

is therefore considered valid also for the power output, not only for the wind. Mathematically speaking,

this model is easily defined in (2.30) and (2.31):

U∞(t+ ∆t) = U∞(t) (2.30)

P (t+ ∆t) = P (t) (2.31)

This model is surprisingly very accurate in the ultra-short term and because of its extremely low cost

it is used as a benchmark in comparison of the new forecasting models to check their validity [23] [24].

However, the accuracy of the persistence method decreases rapidly when the time-scale of forecasting

increases [25].

2.3.2 Physical Methods

Physical methods have been studied to improve Numerical Weather Prediction (NWP), so that more

accurate forecasts could be reached. NWPs use weather and site-dependent data to obtain weather

forecasts on large areas [26]. In order to run these methods supercomputers are needed.

The goal of physical models is to obtain the forecasts by using several parametres depending on an

accurate description of the atmosphere.
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2.3.3 Statistical Methods

Statistical methods use historical data in order to find correlations among some of the variables able

to describe the atmospheric conditions. Obviously, in this case the objective is to find the wind speed

and direction at a certain moment in the future. Statistical models are easy and cheap to create, if

compared with the other possible methods. A typical negative aspect for these models is that their

precision decreases as the time-scale increases [22]. It can happen that even with a prediction time of

more than two days, the results from a sophisticated time series model are matched by using the mean

of the wind data for the same day in each of the previous five years [27].

The methods that are most widely used for wind forecasts are the auto regressive (AR), the auto

regressive moving average (ARMA), the auto regressive integrated moving average (ARIMA), Bayesian

approach and gray predictions, These methods can also be integrated with additional ”functionalities”,

for example the generalised autoregressive conditional heteroskedasticity (GARCH) [27]. GARCH com-

ponents allow the variance to evolve in an autoregressive way over time. In the same article an approach

for the prediction is also proposed, the esemble prediction. This different approach gives an evaluation

of the weather uncertainty by creating an estimate of the probability density function for the weather

variables.

2.3.4 Other Methods

The remaining methods listed in 2.3 are less used than the ones that have just been mentioned and

therefore are collected into a single section.

Spatial correlation models use the measurements from other sites to find the wind conditions at the site

studied. This method has been tested and produced solid results [28].

Artificial intelligence models have been created following the development of the artificial intelligence.

Some of the models created make use of artificial neural network (ANN), adaptive neuro-fuzzy inference

system (ANFIS), evolutionary optimisation algorithms, support vector machine (SVM), fuzzy logic meth-

ods and neuro-fuzzy network [22].

Finally, the hybrid models have been created in order to fix the weak points of a certain method

by merging such a method with another one. This way it is possible to take advantage of the pros of

each of the models [25]. Hybrid models can be used to merge models based on the approach (e.g.

physical and statistical methods) or on the time-scale (e.g. short- and medium-term models) [24]. Some

examples of hybrid methods are the combinations of artificial intelligence methods and any of following

three: physical, statistical or another artificial intelligence approach [22].

2.4 Conclusions to the Chapter

At the beginning of this chapter, five possible wake models to implement in the physical model that will be

formulated in Chapter 3 are exposed. The models exposed are the Jensen [1], the Ainslie [8], the Larsen

[12], the Fradsen [13] and to conclude, the Gaussian [3] wake models. Afterwards, some possible ways
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to consider multiple wakes are explained. To conclude, the forecast models commonly used by wind

farms are exposed. The one that is used as a benchmark to prove the validity of the new models is the

persistence method, which considers the wind conditions equal to the ones of the previous time interval.

The other models included in the chapter are mainly part of two families, physical and statistical models.
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Chapter 3

Physical Model

As reported in Chapter 2, there are several models that could be implemented in order to create a model

that would allow to predict the power output of the wind farm. The choice on the wake and combination

models to be used was made considering complexity, time of computation and other information found

in the articles.

3.1 Choice of the models

As far as the wake model goes, the Jensen model [1] was chosen. This choice was made for several

reasons:

• The deficit created by the wake is considered constant with the distance from the rotor, creating

the top-hat profile that has already been mentioned

• As it can be seen from Equation (2.2), the model works with a limited amount of inputs, of which

CT and s depend on the turbine and the wake decay coefficient k can be found in literature

• The wake expands linearly with expansion rate equal to the wake decay coefficient; this charac-

teristic will be very useful in Section 3.4, where the interceptions between wakes and rotors will be

detected

• It is used in commercial softwares, which means that it is a reliable model that produces solid

results, if working under the correct conditions

• In case of complex wind scenario, category under which the analysed wind farm falls, using im-

proved wake models does not lead to significantly better results [3]

• In relation to what has just been mentioned, the limited computational time becomes an advantage

as spending more time would not lead to better results.

For the Jensen model, the suggested combination model is the quadratic superposition method

exposed in Section 2.2.1. This method in particular was formulated for the first time for the Jensen
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model itself by Katic [2], which assures that the two models can work well together. The Jensen model

also fits this case as the minimum distance between turbines is above 3 diameters, which means that

we are only interested in the far wake region.

Given the complexity of the calculations relative to the prediction of the wind speed and the instru-

mentation needed (as explained in Section 2.3), it was chosen not to consider the aspect. Even though

there was the possibility of using the persistence method (reported in Section 2.3.1), it was preferred not

to consider it as the wind farm might have a prediction method of its own.

3.2 Creation of Custom Power Curves

After studying the layout of the wind farm, the validity of the power curve provided by the manufacturer

was tested. This verification was made by comparing the power output estimated by using the power

curve and the 10-minute average wind speed provided by the wind farm and the actual output according

to the data. It was found that the power outputs were different and therefore the power curve of the

manufacturer was deemed as unreliable. Creating custom power curves is a practice that is used by

wind farms. They are used because the manufacturer power curve is usually valid only under idealised

conditions (i.e. isolated single turbine, surrounded by flat terrain). Also, the manufacturer power curve

best works when there is no interference among turbines [31]. Because of these reasons, four sets

of power curves were produced and tested. Cutler et al. [31] initially suggested the use of a power

curve for the whole wind farm. However, the creation of such a power curve would not allow to predict

the output in case of shutdown of one or more turbines. Therefore, similarly to what is later suggested

in the same article, direction-dependent power curves will be studied further on. The article proposes

direction-dependent power curves and then finds a relationship between the speeds at the different

turbines and the met mast measurements. In the model here proposed, instead of using the met mast

measurements, at the end of the work the wind speeds at the turbines are found in relation to the

undisturbed wind speed.

The first set was created using the wind speed and the power output data. Therefore, each point was

characterised by the mean wind speed experienced by that turbine during those 10 minutes on the x-axis

and by the average power output during the same time gap on the y-axis. In this first approach, only the

time gaps in which the wind speed was between 2.5m/s and 11.5m/s were used, which means almost

only the part of power curve where P ∝ u3. The curve itself was then obtained using the Curve Fitting

app present in MATLAB. The results found using this new set were better than the previous results,

therefore these new power curves were considered more reliable than the manufacturer one. However,

there were some bad results at low speeds.

In the second approach, only data with wind speed between the cut-in wind speed (3m/s) and the

rated wind speed (11m/s) were considered. The curve obtained was slightly better, but in some cases

weak results were still attained.

In the third array of power curves, the wind speed interval considered was between 3.5m/s and

11m/s. In addition to this, the outliers were not considered. In MATLAB, the outliers are defined as the
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points which are greater than q3 + w · (q3 − q1) or lower than q1 − w · (q3 − q1). The parametres q1 and

q3 represent respectively the 25th and 75th percentiles of the data, while the default value of w is 1.5. In

this case, no negative values were found, making this new set of curves more reliable than the previous

ones. Nevertheless, according to these curves, the power output for low wind speeds (near to the cut-in

wind speed) is very high. When the wind speed is between 4m/s and 7m/s all these series of power

curves yield power coefficients (Cp) that are too high.

The final procedure is based on the use of box plots and their medians. The data was divided into

bins according to the wind speed and then the relative box plots were plotted. Two different sizes of

bins were used: initially, the bins collected data within a gap of 1m/s, while later bins of 0.5m/s were

preferred. Also, both the case with and the case without outliers were considered. Eventually, the

approach that was considered the best one was the one with bins of 0.5m/s and without outliers. In

fact, the curves obtained using the bins of 0.5m/s led to results closer to the data when the wind speeds

predicted by the model were compared with the measured ones. An example of the results of such a

method is showed in Figure 3.1.

Figure 3.1: Disposition of the box plots used for the custom power curve

Once again, for wind speeds near to the cut-in wind speed, the estimated power output is very high.

This most probably happens because of the variability of the wind and the use of the 10-minute intervals.

In fact, during those 10 minutes the wind can vary significantly even though for a limited amount of time.

This would lead to an increase in the value of the mean power output. Even though the mean wind

speed value would grow, the increase cannot be of the same size because the power output increases

with u3. In addition to this aspect, if the wind speed reaches an elevated value for a very limited time,

the power output will vary even faster [30]. The comparison among the manufacturer power curve, the

power curve obtained with wind speeds between 3, 5m/s and 11m/s and without outliers (in the graph

defined as ”Custom power curve”) and the one obtained using the boxplots is shown in Figure 3.2.
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Figure 3.2: Comparison among the three possible power curves

Finally, the power curve was chosen among the different sets. The power curves obtained using the

box plots of 0.5m/s and without outliers were considered the best ones mainly because they were the

only ones that flattened near the rated wind speed.

The study of the power curves allowed also to identify two turbines whose data were not reliable. In

fact, when calculating the Cp from the chosen power curve, its value was often above the Betz limit. This

problem probably derives from a malfunctioning in their anemometers. In Figure 3.3, the comparisons

among the different power curves for the two unreliable turbines are shown. By comparing the two

images in Figure 3.3 with Figure 3.2, it is possible to notice the difference of the power curves and that

the ones in Figure 3.3 produce higher power at the same wind speed than the one in Figure 3.2.

(a) Turbine 22 (b) Turbine 45

Figure 3.3: Comparisons among the power curves for the unreliable turbines
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During the calculations, the power estimations relative to these two turbines have been carried out

considering the manufacturer power curve, as it was the only one certainly reliable among the different

sets considered.

3.3 Study of the Wind Field

As a next step, the evolution of the wind field within the wind farm was studied. This operation allowed

to see how the wind behaves in the area and therefore, to detect the presence of any particular con-

formation or obstacle. The development of wind conditions was represented using sequences of quiver

plots for several dates throughout the year. Each of the quivers was plotted using the average data of

the 10-minute time slot. A quiver plot perfectly fits the representation of a vector field. In this particular

case, the vector is the wind speed, with the sense of the vector indicating the direction in which the

wind is blowing and its magnitude proportional to the value of the wind speed. An example of the plots

obtained is shown in Figure 3.4. Because of the demeanour of some of the turbines, it was thought that

there might be a hill eastern than the farm. However, no turbine suggested the presence of significant

obstacles inside the wind farm and therefore, no further wake had to be considered in order to determine

the wind field of the area.

Figure 3.4: Quiver plot representing the wind field on 01/04/2016 at 00 : 20

The use of the quivers helped in discovering further unreliable turbines. In fact, some of the vectors

were often pointing in directions that did not agree with the one that the nearby vectors were indicating.

In order to be sure that these discrepancies were created by a malfunctioning in the anemometer and not

by a real difference in the wind direction, the disparities in direction between the unreliable turbines and

the averages of the nearby ones were calculated. It was found that in all the cases in which the possibility

of a problem was detected these disparities were almost constant through time. Therefore, it could be
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realistically assumed that the origin of the differences in direction was the anemometer. Consequently,

this group of turbines was added to the two previous ones that had already been labelled as unreliable.

Overall, the turbines classified as inaccurate were 6. In the quivers, sometimes it was also possible to

notice the turbines that could not measure the wind speed properly. This happened because the vectors

were significantly shorter than the adjacent ones, without the possibility that the reason was the wake of

another turbine.

3.4 Detection of the Interceptions

In order to find the degradation of the wind along different directions thanks to the deficit that each

turbine experiences, it was necessary to find when wakes intercept one or more rotors. To be able

to detect these interceptions it was supposed that all the rotors face the same wind direction (a brief

explanation of the reasons behind this assumption is included in Appendix A). This assumption is not

completely true as the wind direction varies in space and time, especially considering 10-minute time

gaps. However, it is reasonable to consider that near turbines experience similar wind directions. Thanks

to the assumption of the Jensen model of linear expansion of the wake it was possible to check when

the interception happened. Such an operation was carried out considering situations like the one shown

in Figure 3.5.

Figure 3.5: Graphical simplification of the interception between wake and rotor

Making the additional assumption that there are only complete interceptions, it was then possible to

find the degradation of the wind along the different directions. The consequence of this assumption is

that every time an interception happens, it is considered a full one and therefore the deficit is overes-

timated. In particular, the interception was detected by checking if either B1 or B2 was in the triangle

formed by P , N1 and N2.

Using the scheme of Figure 3.5 as an example, the calculations needed to find the key points are

listed below. The origin of the cartesian coordinate system has been taken in correspondence of the

nacelle of turbine 1. In order to find point P , the equations reported in (3.1) must be calculated.
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xP =
√

R2

k2·(1+m2)

yP = m · xP
(3.1)

The coordinates of point T can be found with the equations in (3.2).

xT =
x2
m +y2

m+ 1
m

yT = m · xT = m ·
x2
m +y2

m+ 1
m

(3.2)

The explanation on the finding of the system of equations (3.2) is included in Appendix A. The points

x2 and y2 in (3.2) are the difference in the GPS coordinates between the two turbines considered.

These coordinates were provided by the wind farm in the format of cartesian corrdinates where x is

denominated easting and y northing. After finding point T , it is possible to find the two most external

points of the wake at distance OT from turbine 1, represented by points N1 and N2. The coordinates of

these points are given by the two possible solutions to the system of equations reported in (3.3).

(x− xT )2 + (y − yT )2 = −r2

y − yT = − 1
m · (x− xT )

(3.3)

In system (3.3), the variable r stands for the radius of the wake at distance OT from the origin of the

coordinate system. Finally, the two extremities of the rotor of turbine 2, which are B1 and B2, are found

by solving the system (3.4).

(x− x2)2 + (y − y2)2 = −R2

y − y2 = − 1
m · (x− x2)

(3.4)

When the interception happens, for a given wind speed the value of the deficit depends only on the

downstream distance from the upstream rotor. If there is no interception, the deficit will be considered

equal to zero. The value of the deficit depends only on the distance from the rotor because the wake

decay coefficient k has been considered equal to 0.075, as used also in WAsP [4]. The deficit varies with

the wind speed because the thrust coefficient CT has not been considered a constant characteristic of

the turbine, but dependent on the Cp, according to (3.5):

CT =
Cp

1− a
(3.5)

where a is the axial induction factor and is estimated from Cp following equation (3.6):

Cp = 4a · (1− a)2 (3.6)

The deficit was then estimated according to the Jensen model using equation (2.2). However, two

conditions were set in order for the deficit to be valid: 1) the distance between the rotor creating the

wake and the one intercepted must be lower than 40 diameters (x < 40 ·D) and 2) the deficit has to be
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Table 3.1: Matrix containing the deficits for a wind speed of 5.5m/s for the physical model
0◦ 22.5◦ 45◦ 67.5◦ 90◦ 112.5◦ 135◦ 157.5◦ 180◦ 202.5◦ 225◦ 247.5◦ 270◦ 292.5◦ 315◦ 337.5◦

T1 0 0 0 0 0 0 0 0 0 0 0.021 0 0.172 0.185 0 0
T2 0 0 0 0 0.173 0.172 0 0 0 0 0.020 0.017 0 0.182 0 0
T3 0 0 0 0 0 0.162 0 0 0 0.023 0 0.016 0.164 0.184 0 0
T4 0 0 0 0 0.162 0.172 0 0 0 0.023 0.025 0.012 0 0.071 0.135 0
T5 0 0 0 0 0 0.090 0.135 0 0.021 0 0.015 0.012 0 0.164 0 0
T6 0 0 0 0 0 0.164 0 0 0.017 0.023 0.015 0 0 0 0 0
T7 0.020 0.024 0.021 0 0 0 0 0 0 0.016 0 0.019 0.155 0 0 0
T8 0.017 0.020 0.016 0 0.171 0 0 0 0 0.010 0 0.026 0.107 0.016 0 0
T9 0 0.021 0.021 0 0.101 0 0 0 0.018 0.017 0.047 0.032 0.011 0.202 0 0
T10 0 0.019 0.017 0.013 0 0.170 0 0 0.018 0.018 0.017 0.032 0.144 0.165 0 0
T11 0 0 0.024 0.016 0.140 0.158 0 0 0 0.053 0.043 0.048 0.051 0.074 0 0
T12 0 0 0 0.017 0 0.077 0 0 0.021 0.043 0.050 0.025 0.058 0.145 0 0
T13 0 0 0 0.013 0 0.171 0 0.034 0.043 0.052 0.046 0.105 0.078 0 0 0
T14 0 0 0 0.099 0.054 0 0.037 0.057 0.082 0.095 0 0.051 0.095 0 0.140 0
T15 0 0 0 0 0.089 0 0.149 0.064 0.082 0.060 0.162 0 0 0 0 0
T16 0 0 0.134 0 0.110 0 0.066 0.091 0 0 0.112 0 0 0 0 0
T17 0 0 0.133 0.058 0.018 0.106 0.170 0.170 0 0 0 0 0 0 0 0
T18 0 0.052 0 0.028 0.140 0.047 0.078 0 0 0 0 0 0 0 0.156 0.156
T19 0.068 0.091 0.049 0.030 0 0.208 0.012 0.055 0.117 0 0 0 0.107 0.091 0 0.091
T20 0.085 0.038 0.034 0.035 0 0.047 0.116 0.026 0.090 0 0.082 0 0.068 0.147 0.047 0.042
T21 0.042 0.039 0.036 0.030 0.046 0 0 0.018 0.039 0 0.081 0 0 0.098 0.138 0.064
T22 0.047 0.024 0.019 0.012 0 0 0 0.010 0.033 0.017 0.021 0.021 0.103 0.034 0.021 0.016
T23 0.112 0.039 0.098 0.022 0.019 0 0.178 0.163 0 0 0 0 0 0 0.081 0
T24 0.102 0.024 0.093 0.051 0 0 0.151 0.149 0 0 0 0 0 0 0.181 0.184
T25 0.045 0 0.048 0 0 0 0.151 0.133 0 0 0 0 0 0 0.150 0.139
T26 0.042 0.039 0.011 0 0 0.011 0.163 0 0 0 0 0 0 0 0.134 0.136
T27 0.012 0.013 0.011 0 0 0.054 0.033 0 0 0 0 0 0 0 0.181 0.031
T28 0.020 0.015 0 0 0.072 0.057 0.158 0.151 0 0 0 0 0 0 0 0.020
T29 0.010 0 0 0.086 0.086 0.047 0.149 0.148 0 0 0 0 0 0 0.148 0.149
T30 0 0 0.093 0.080 0.079 0.016 0.184 0 0 0 0 0 0 0 0.160 0.161
T31 0.072 0 0.103 0 0.128 0 0.170 0.145 0 0 0 0 0 0 0.188 0.012
T32 0.044 0.057 0.087 0.055 0.031 0 0.148 0 0 0 0 0 0 0 0.138 0.122
T33 0.060 0 0.064 0 0 0 0.154 0 0 0 0 0 0 0 0.149 0
T34 0.059 0.046 0 0.037 0.087 0 0.155 0.125 0 0 0 0 0 0 0.150 0.020
T35 0.038 0.031 0.037 0 0 0.077 0.052 0.154 0 0 0 0 0 0 0.149 0.127
T36 0.029 0.078 0 0 0.121 0 0.156 0.156 0 0 0 0 0 0 0.094 0.159
T37 0.033 0.032 0.133 0 0 0 0.161 0.161 0 0 0 0 0 0 0.175 0.163
T38 0.117 0.085 0 0 0 0 0 0 0 0 0 0 0 0 0.156 0.146
T39 0.117 0 0 0 0 0 0 0 0.085 0.103 0.145 0 0.107 0.088 0.025 0.107
T40 0.050 0 0.117 0 0 0 0 0.117 0.110 0.100 0 0 0.066 0 0.054 0.060
T41 0 0 0 0 0 0 0 0 0 0.040 0.127 0.049 0.023 0.050 0.101 0
T42 0 0 0 0 0 0 0.083 0 0.065 0.033 0.040 0.170 0.197 0.063 0 0
T43 0 0 0 0.173 0.166 0 0 0.059 0.048 0.052 0.058 0.052 0.143 0.038 0 0
T44 0 0 0 0 0.139 0.039 0.039 0.038 0.046 0 0.114 0 0.120 0.066 0.179 0.162
T45 0.016 0.014 0 0 0 0.067 0.187 0.187 0.041 0.086 0.131 0.113 0.056 0.060 0.187 0.021
T46 0.013 0.017 0 0 0 0.030 0.151 0.033 0.086 0 0.097 0.097 0.066 0.050 0.025 0.022

higher than or equal to 0.01 (∆U ≥ 0.01). The second condition was conceived using the same definition

of the thickness of the boundary layer and was created because according to equation (2.2), the value

of the deficit never reaches a value equal to 1. The total deficits were collected in a 3D array where the

three dimensions were the number of the turbine, the wind direction and the wind speed bin. The speed

bins in this case were considered having a size of 1m/s. On the other hand, the deficits were classified

based on the directions in bins of 22.5◦ , starting from 0◦ and going until 337.5◦ . In each bin the angle

that gives the name to the interval is the middle value. Using the bin of 0◦ (which means that the wind

is blowing fom North) as an example, the data collected in this interval had the wind direction ranging

between −11.25◦ and 11.25◦ . The wind direction is important because depending on it, obviously the

interceptions between wakes and rotors vary. In Table 3.1 there is an example of one of the matrices

included in the 3D array. This particular case is for the speed bin of 5.5m/s, which means that it is valid

for speeds ranging from 5m/s to 6m/s.
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3.5 Research of the Inputs to the Model

Once that the deficits have been found for all the speeds and directions, the next step is to find the

inputs to the model. The two inputs needed must describe the wind conditions in the 10 minutes of the

time interval. Therefore, one input will define the wind speed and the other will characterise the wind

direction.

3.5.1 1st Input: Speed

In order to find the wind speed experienced by each turbine, a value for the undisturbed wind speed to

use with the already-found deficits was needed. To find such an input an optimisation function included

in MATLAB was used. The function that had to be minimised was the accumulated difference between

the measured wind speed and the estimated wind speed at each turbine, as described in (3.7):

∆uacc =

Nturb∑
i=1

|umeasured,i − umodel,i| (3.7)

where Nturb is the number of turbines currently working. The value of Nturb is not always the same

because sometimes it can happen that one or more turbines are not working for different reasons (e.g.

shutdown for maintenance). In particular, this happened for a turbine for several months at the beginning

of the year analysed. Therefore, considering Nturb constant would have led to wrong results.

The result of (3.7) was minimised by varying the speed input at the model. The value that minimised

the result was saved and will from now on be called uopt. In the meantime, the maximum wind speed

experienced by any of the reliable turbines and the average wind speed throughout the wind farm were

computed. The average wind speed throughout the wind farm was estimated by finding the mean value

of the wind speeds experienced by all the reliable turbines. Afterwards, a relation between any two of

the three wind speeds that have been found (uopt, umax and uavg) was seeked. While no significant

relation was found between the maximum wind speed and the optimal wind speed and also between the

average wind speed and the maximum one, the comparison between uavg and uopt produced interesting

results. These results are exposed in Figure 3.6, where:

• sse is the sum of squared error

• rsquare is R2

• dfe represents the degrees of freedom for error, which is equal to the number of observations

minus the number of estimated coefficients, stored as a positive integer value [34]

• adjrsquare is the adjusted R2

• rmse is the root mean square error.

In the bottom left corner of Figure 3.6, the equation of the line that best fits the scattered points is

reported. It can be easily seen that it is extremely near to y = x and therefore, uopt can be approximated

with the average wind speed.
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Figure 3.6: Optimal wind speed as a function of the average wind speed

Since the calculation of the average wind speed requires data from all the turbines, an attempt

to find a different relation was made. Given the presence of two met masts within the wind farm, it

seemed reasonable to look for a relationship between their measurements and the optimal wind speed.

As a simplification, uopt was considered equal to the average wind speed. This way, the calculations

resulted easier and faster, without compromising the results in a significant way. As an initial analysis,

the measurements of met masts and turbines for a random time slot were compared to see if they could

be used. The results are shown in Figure 3.7, where the legend is missing because of its excessive size.

However, the two met masts are represented by the two bigget X ’s in the graph. The graph represented

in Figure 3.7 is a polar graph where the angle from the upper half of the vertical axis indicates the

direction and the distance from the origin serves as the wind speed. Figure 3.7 therefore represents

both the mean wind speed and direction according to each turbine and to both the met masts in a

random time slot of 10 minutes.

Figure 3.7 allows also to verify the unreliability of one of the turbines labelled as such in Section

3.3. It can be easily seen that the met masts are not able to represent the undisturbed conditions of

the wind. However, being those two measurements in the middle of the others, they might have a close

relationship with the average wind speed and therefore with the optimal wind speed. In order to see

if such a relationship exists, two graphs for each of the 16 angular sectors considered were plotted,

one per met mast. This method allowed to see if at least in a specific case the measurements of the

met masts were able to resemble the average wind speed. Four examples of the graphs obtained are

reported in Figure 3.8.

In the captions in Figure 3.8, 81 and 82 are the ID’s given to the two met masts by the management

of the wind farm. Figures 3.8(a) and 3.8(c) are two examples that show how there is no direct relation

between the average wind speed and the speed at either of the two met masts. Even though Figures

3.8(b) and 3.8(d) are two of the cases in which the data from the turbines seems to be related with the

one from either of the met masts, it can be noted how the relation is not strong enough in order for
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Figure 3.7: Comparison among the met masts and the turbines measurements

(a) Met mast 81 in angular sector 225◦ (b) Met mast 81 in angular sector 315◦

(c) Met mast 82 in angular sector 225◦ (d) Met mast 82 in angular sector 315◦

Figure 3.8: Comparisons between met masts data and turbines average data
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the met masts data to be used in the model. As a last attempt, the average of the measurements of

the two met masts was briefly used. However, no significant improvement was noticed. Consequently,

the input to the model describing the wind speed was chosen to be the average of the wind speeds

collected by the turbines, so that its value could be easily estimated from the measurements without

further calculations.

3.5.2 2nd Input: Direction

While the calculations to find the input describing the wind speed were carried out, also the ones relative

to the other input were performed. This second input is needed, like the previous one, to find which

column of the 3D array containing the deficits consider. In this case the choice was easier than in the

case of the first input. In fact, the input chosen was simply the average of the directions of all the reliable

turbines. However, such a calculation was not as simple as it may seem. Problems rose because in

some cases it happened to make the calculations with values close to 0◦ . This meant that there were

values on both sides (> 0◦ and < 360◦ ). In order to solve this problem an external function of MATLAB

was used.

3.6 Conclusions to the Chapter

To sum up this chapter, the structure of the physical model was defined and justified.

• The Jensen model was chosen as the wake model to be used

• The set of power curves that was considered the most reliable one is the one obtained from the

medians and boxplots, with speed bins of 0.5m/s and no outliers

• The wake decay coefficient was set equal to 0.075

• The average speed and the average direction among the turbines were chosen as the inputs to

the model

Moreover, the evolution of the wind field within the wind farm was explained and 6 turbines were

found to be unreliable because they failed to measure either the wind speed or the wind direction.
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Chapter 4

Results of the Physical Model

The results of the model elaborated and explained in Chapter 3 are exposed in this chapter. Several

methods have been used in order to verify the validity of the physical model. Some of them will be

explained in the following sections together with the explanations of the results and their consequences.

4.1 Degradation of the Wind

The degradation of the wind could be studied thanks to the deficits found previously using the method

explained in Section 3.4 based on the Jensen model [1]. Thanks to the deficits, it was possible to see

the evolution in space of the wind speed in the area of the wind farm. In order to properly represent in a

graphical way this degradation, contour plots were used as they perfectly suit the situation. Contour plots

are able to show how the wind speed behaves by collecting the results from the model and interpolating

them to find the wind speed profile in the space among the turbines. The area of the plot (and ideally,

also of the wind farm) is then divided in different areas depending on the wind speed estimated. An

example of the results obtained using contour plots is shown in Figure 4.1.

The vector present in the graph stands for the input that has been used for the model while the

contours in the graph characterise the circumscribed area based on the estimated wind speed in that

portion of the wind farm. The sense of the vector indicates the direction the wind is blowing and the mag-

nitude and the number nearby the mean wind speed estimated from the reliable turbines, as explained

in Section 3.5. On the other hand, the black dots indicate the location of the turbines. The same type of

plot was used to represent graphically the degradation of the wind as described by the measurements

of the anemometers located on the nacelles of the turbines. These new results are shown in the other

contour plot, in Figure 4.2.

In the case of Figure 4.2, the magnitude of the vector symbolises the maximum wind speed experi-

enced by any of the turbines, which can also be seen as the undisturbed one. Consequently, the values

shown in Figures 4.1 and 4.2 must not be compared, as they represent two different things. Since the

speeds at the turbines are given by the model and the empirical data respectively, if the model works, the

final result will be similar to the one obtained from the data, which means that the contour plots should
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Figure 4.1: Contour plot representing the spatial degradation of the wind on 17/01/2016 at 04 : 10
according to the physical model

Figure 4.2: Contour plot representing the spatial degradation of the wind on 17/01/2016 at 04 : 10
according to the wind data
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be similar. Unfortunately, this does not happen and the two contour plots differ one from the other. It can

be noted how in both Figure 4.1 and Figure 4.2 the wind speed outside of the wind farm reaches much

higer values than any turbine, even the ones that experience undisturbed wind. This happens because

the only measurements available are the ones of the turbines and therefore, beyond them there are no

bonds to limit the evolution of the wind speed and keep the interpolated value realistic. These shortcom-

ings represent a first clue that the physical model formulated in Chapter 3 might not work and obtain the

desired results.

4.2 Evolution of the Accumulated Difference

One possible problem that may happen when working with optimisation algorithms and minimisations

in particular is that the stationary point located during the calculations might be a local one, while the

one needed is the global minimum or maximum. To avoid this issue, the algorithm written with the

objective to find the optimal wind speed uopt (as explained in Section 3.5.1) was tested to verify that the

minimum it identified previously was a global minimum and not a local one. To do so, the real conditions

measured during the 10-minute time slot were compared with the results of the model obtained by always

varying the wind speed U∞ in equation (2.2), which is different from varying the input to the model. It

is different because in this part of the study, the deficits have been assumed constant as in reality the

wind conditions do not change. During these calculations, it happened only once that the wind speed

U∞ was equal to the average wind speed. The accumulated difference ∆uacc in this case has therefore

been estimated as exposed by equation (4.1).

∆uacc =

Nturb∑
i=1

|umeasured,i − umodel,i| (4.1)

With umodel,i that has been calculated in the following way:

umodel,i = U∞ · (1−∆U i) (4.2)

The evolution of the accumulated difference when varying U∞ is shown in Figure 4.3.

It can be clearly seen how there is only one minimum, which therefore is both local and global.

Consequently, the minimum found with the optimisation during the creation of the model is certainly

a global one. Such a behaviour could have been easily predicted from equation (4.1), since without

considering the absolute value, ∆uacc varies linearly with the speed resulted from the model. The

demeanour also suggests that the model cannot be further improved under this aspect.

4.3 Comparison of the Wind Speed at the Turbines

Since the model has been created to predict the power output of the wind farm summing the power

production of each single wind turbine, a suitable method to check the validity of the model is to compare
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Figure 4.3: Behaviour of the accumulated difference when the undisturbed wind speed is varied

the measured wind speed at each turbine with the one estimated by the model itself. This comparison

was made for a random time slot and was represented graphically in a normal cartesian graph. Such a

graph is shown in Figure 4.4.

In Figure 4.4 there are two graphs because each of them is a better example of a particular issue

that has been noted with the results of the model. In these graphs, on the x-axis there is ideally the

number of the turbine, while on the y-axis the wind speed is represented. On the x-axis there are no

labels because they would have created confusion without adding important information since this graph

was plotted to check the validity throughout the wind farm and not to detect problems at the location of

particular turbines.

Figure 4.4(a) better represents the tendency of underestimating the deficits by the model. Even

though in Figure 4.4(b) this does not happen, the underestimation of the deficit is a problem that occurred

very often when running the model. This issue was detected mostly along some particular directions.

These directions were the most unfavourable ones because the wind was blowing parallel to the main

line of turbines, thus creating numerous wakes that added one another.

Figure 4.4(b) shows, at least for the first turbines, how it was not possible for the model to create

differences in wind speeds when no interception happened. In fact, according to the model most of the

first turbines experience the same wind speed because the wind direction does not create interceptions

between wakes and rotors in that area. As it can be seen from the measurements, this is not the case

and actually, those same turbines in reality undergo some of the lowest wind speeds in the whole wind

farm. Generally speaking, it is extremely unlikely that turbines encounter the same wind speed, not even

if they are adjacent ones. This problem is less evident in Figure 4.4(a), as the measured speeds are

much closer to the average wind speed used as input to the model.

In an attempt to improve the model, time was spent thinking about an additional feature to the model
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that could make the results of the model closer to the measurements. This feature would make the curve

created by joining all the points representing the results of the model more similar to the curve found

doing the same with the points indicating the measurements. Unfortunately, since the model was purely

based on the deficits created by the wakes, no additional method could be thought of in order to make

the two curves more similar.

4.4 Turbine Experiencing the Highest Wind Speed

A useful feature of the model created is the ability to let the user know which turbine experiences the

highest wind speed according to the measurement data and which should be the deficit that it expe-

(a) First comparison

(b) Second comparison

Figure 4.4: Two comparisons of the wind speed at the location of each turbine according to the physical
model
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riences according to the model. It comes without saying that given the structure given to the model,

this turbine should experience a deficit equal to zero. When long periods of time were analysed and

simulated, the value of this deficit was always shown as soon as the calculations for a specific time slot

were over. It sometimes happened that the value of this deficit was different from zero, which means that

according to the model not only that turbine was not the one experiencing the highest wind speed, but

it was also in the wake of another turbine. This aspect also highlights the presence of problems within

the formulation and use of the model, most probably related to the lack of consideration of additional

aspects that affect the performance of a wind turbine and a wind farm in general.

4.5 Shortcomings of the Wake Models in Literature

Given the results exposed in the previous sections of this chapter, it can be stated that the physical

model created for the wind farm did not work. The aspects considered by the model were not enough

to reproduce a realistic behaviour of the wind inside the area of the wind farm. In fact, even though

analytical wake models are still the most widely used means of calculation in predicting the wake effect

they cannot yet be applied to all the possible situations and layouts. Two aspects that were not given

enough attention when the first analytical models were created are the roughness and the atmospheric

stability [35]. These aspects were sequently considered and new versions of the Jensen model were

created. An example is the new formulation of the wake decay coefficient k for the infinite wind farm

case, which however is not the case of the farm considered in this study [36]:

k =
u∗free
uhfree

=
κ

ln
(

h
z0

)
− ϕm

(
h
L

) (4.3)

where:

• u∗free is the undisturbed friction velocity

• uhfree is the wind speed at the height of the hub

• κ is the von Kármán constant and it’s equal to 0.4

• h is the hub height

• z0 is the roughness length

• ϕm(h/L) is the correction relative to the stability (L) at hub height

Other research relative to the wake decay coefficient was carried out. An interesting formulation

of the wake decay coefficient relates it to the roughness length z0, which is connected to the ambient

turbulence [37]:

k =
0.5

ln
(

h
z0

) (4.4)
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Further analysis led to the suggestion that its value is not constant and that it varies also along the

downstream direction. In fact, the wake decay coefficient has been found to be dependent also on

additional aspects, which are the shear-generated turbulence and the one originated by the turbine [38]

[39] [40]. The second aspect limiting the validity of the Jensen model is the assumption of the top-hat

behaviour of the deficit within the wake, which does not describe the phenomenon in a realistic way.

Consequently, the distribution of the speed is far from being truthful. In fact, the velocity within the wake

varies according to a Gaussian or a trigonometric distribution. This means that, contrarily to what has

been mentioned about the Jensen model in Section 2.1.1, the speed does not actually varies depending

on a single dimension, but changes along two dimensions [41]. A deeper explanation of a new model

taking these aspects into account is presented in Appendix B.

Comparing results obtained from the application of the Jensen model to CFD simulation, it has also

been found that using the values of coefficients suggested originally by Jensen [1] and in numerous

other publications the wind speed predicted at the centreline is overestimated [35]. This statement is

in accordance with what has been experienced with the results of the model here formulated. The

same comparisons with CFD simulations highlighted that even in the most basic case like the one of

a single wind turbine, the predicted expansion did not reproduce the results of the simulation. In order

for the Jensen model to produce results closer to the simulations the values of the parametres had to

be optimised. Still, the optimised results were in agreement with the CFD simulations only after many

diameters (usually around 20 or more).

Figure 4.5: Shifting of the point with highest deficit within the wake (modified from [18])

Another problem that was detected within the model was relative to the superposition of the wakes.

The models listed in Section 2.2 are reliable when isolated single turbines are analysed. However, they

are not as reliable when several turbines come into play. In fact, there are numerous physical phenomena

that are not accounted for when wakes are combined using those models. These phenomena appear

in all the possible combinations between a wake and a rotor: when the two rotors are aligned, when the

wake partially hits the rotor downstream and even when there is no interception between rotor and wake.

One of the phenomena not considered is the shifting of the point with the highest deficit within the wake

even when the turbine considered is isolated. In fact, this point moves towards two directions: rightwards

because of the rotation given by the rotor and downwards. The movement happens towards the ground

because the wake recovers energy faster in the upper side than in the lower side. This shifting is not
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considered in the softwares used to predict the deficits and has only be treated with Dynamic Wake

Meandering (DWM) [20] in the academic field. The movement of the wake here described is graphically

represented in Figure 4.5.

Another physical phenomenon not accounted for in analytical models is the faster recovery of the

wake behind two rotors. This happens when the two turbines are in line, therefore it is not a very

common situation, but still the most studied one. When such a phenomenon happens, if there is a

third turbine in line with the two previous ones and the same distance between turbines was used, the

third turbine will end up producing more power than the second one [42]. This phenomenon is clear in

Figure 4.6(b), where it is possible to note that the third turbine in row C with the layout and wind direction

represented in Figure 4.6(a) produces a higher output than the second one.

(a) Lillgrund wind farm layout (b) Normalised output in row C of Lillgrund wind farm

Figure 4.6: Graphical explanation of the faster recovery after two turbines (modified from [42])

Also, it can be seen how this phenomenon has aftermaths on the following rotors as well. Fuga

(which is mentioned in Figure 4.6(b)) is a linearised CFD model. This phenomenon is represented also

in CFD simulations. In fact, comparing the deficits at 4D and 8D in Figure 4.5 with the ones at the

same distance from the second wind turbine in case of inline rotors, i.e. 12D and 16D in Figure 4.7,

respectively, it can be noted that the deficit created by the wake is just slightly greater.

Figure 4.7: CFD simulation of the wake in case of two inline wakes (modified from [18])

The reason why the recovery happens faster after two turbines is the increased turbulence after the
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stream meets the second turbine. The lack of consideration of this aspect has certainly created great

discrepancies with reality in case of wind blowing parallel to the main line of turbines.

Even though a simple approach was used in case of partly offset rotors, they play an important role

in the lack of consistency of results of analytical wake models. The deficit that is created by the two

wakes only partly overlapping can be significantly higher than the one predicted using the superposition

methods listed in Section 2.2. Obviously, this underestimation translates into a discrepancy in the power

output. It is thought that the reason why the deficit is greater is the lower amount energy available

between the two wakes. This leads to longer times and distances needed for the wakes to recover and

reach again the undisturbed conditions. Because of the less energy available, the wakes recover energy

from the undisturbed flow above and on the other side. The difference in behaviour of the deficit can be

observed in Figure 4.8, where the CFD simulation in the case of two partly offset wakes is depicted.

Another difference between this case and the previous ones is in the spatial distribution of the Tur-

bulent Kinetic Energy (TKE). In fact, in the previous cases it was almost symmetrical with respect to the

vertical diameter of the rotor, while with two partly offset wakes the symmetry does not happen anymore.

Finally, one last phenomenon concerning the interaction between wakes happens even when they do

not intercept each other. When two wakes are fully offset, the velocity field is affected mainly by the fact

that the wake created by the upstream turbine is forced to the opposite side of the downstream wake.

This happens because the downstream wake creates a different pressure field, which is able to force the

upstream wake to move to the opposite side. This aspect can be observed comparing Figure 4.9 with

Figure 4.5, especially at the downstream distance of 16 diameters from the first rotor. It is even better

shown in Figure 4.10, where the interaction between the two wakes is represented from above.

Figure 4.8: CFD simulation of the wake in case of two partly offset wakes (modified from [18])

Figure 4.9: CFD simulation of the wake in case of two fully offset wakes (modified from [18])

It is interesting to note how the downstream wake does not suffer significant modification. In fact,

comparing the velocity profile on the right at the distances of 12D and 16D of Figure 4.9 with the one
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calculated for the dowstream distance of 4D and 8D in Figure 4.5 respectively it can be observed that

no considerable difference is present. A similar phenomenon happens with the TKE field, which again

is slightly pushed to the opposite side by the pressure field of the downstream rotor.

This aspect is not considered at all in the analytical model but it could be able to create noteworthy

differences between a model and reality. This factor could have played an important role in a model

like the one explained in Chapter 3, where the top-hat behaviour suggested by the Jensen model is

maintained. In fact, not including this shifting of the upstream wake might have led to neglecting some

interactions that actually happened.

To sum up this section, the three main aspects that are not considered by the currently available

models are the following:

1. if the two wakes are aligned, the resulting one will recover faster than the one produced by a single

turbine

2. if they intercept each other only partly, both of them will recover along a more extended distance

3. a certain wake can be forced to move by the pressure field created by another wake

The model that was found to be the one to best represent the actual behaviour of the single wake

and its interaction with other ones is the Ainslie model [18]. Unfortunately, as stated before, this model

was not developed to be easily implemented into a model, but to properly describe the wake itself [9].

Figure 4.10: View from above of the interaction of two fully offset wakes [18]
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4.6 Additional Shortcomings of the Model

To conclude this chapter, some additional reasons why the model did not manage to predict the power

output of the wind farm will be reported. An important aspect not considered by the model but that could

have played an important role in the success of the model is the inclusion of the wakes reflected by

the ground. If the distance is big enough, a wake can reach the ground, be reflected and eventually be

intercepted by a rotor both in its ”direct” component and in its reflected one. A possible solution to this

problem was to consider a second wind turbine symmetrical with respect to the ground and check if its

wake was intercepted downstream. Therefore, using this method there would have been the real turbine

which hub would have had coordinates (x, y, z) and the immaginary one with the hub at coordinates

(x, y,−z). This approach is the same used when the propagation of the plumes from the chimneys of

the power plants is studied.

Another element that could have been considered is the variability of the ground within the wind

farm. In the model, the only way the ground was taken into account was by selecting the wake decay

coefficient, which value however was set according to values found in literature. Consequently, not only

the model considered the effect of the ground on the wind profile constant but it also assumed the

influence of the ground equal to a certain value which is not necessarily the real one.

The lack of consideration of some potential and verified obstacles is another one of the possible

reasons why the model failed to reach its goals. Among the verified obstacles, the two met masts

present in the wind farm can certainly be listed. However, there were other potential obstacles that were

either not considered or not possible to consider. The main example can be the possible presence of

the hill mentioned in Section 3.3 and detected using multiple consecutive quivers. The roads created

to facilitate the installation of the wind turbines and their maintenance are other possible obstacles that

could perhaps affect the wind field within the wind farm.

However, all these reasons are probably of secondary importance compared to the lack of a real

wind field study of the area without the presence of the turbines. In fact, the physical model as it was

explained in Chapter 3 was able to predict velocity deficits only if the rotor of a certain turbine was

intercepted by the wake of an upstream one. Consequently, according to the model several turbines

experienced the same wind speed even though they were far away from one another just because they

were not in the wake of another one. This is obviously not realistic as the wind is extremely variable in

space even in limited distances, not only along the same direction it blows but also in the other. This

aspect created significant discrepancies in different directions of the wind. For example, when it was

blowing perpendicular to the main line of turbines they were all experiencing undisturbed wind speed,

but certainly not the same wind speed. The fact that the two most external turbines are around 8km away

one from the other makes this statement stronger, because it is not realistic for the wind to be constant

on such a wide area. However, this element created problems also in other cases where turbines in

completely different conditions were assumed to encounter the same wind speed just because none of

them intercepted any wake. This reason weighed more in the failure of the model because the main

problem was not the wrong estimation of the velocity deficits (which however played an important role),
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but the lack of defict values due to other effects that could have characterised the wind farm in a more

thorough way.

A final possible reason of the lack of success in predicting the output of the farm is of a different nature

compared to the one previously listed. The fact that the data provided were organised in 10-minute bins

did not allow to properly consider the fluctuations to which the wind speed is subject to. Even though to

a lesser extent, the same can be said for the wind direction as well. Within the 10 minutes the speed

could peak, increasing significantly the energy produced during that interval but only slightly affecting

the mean wind speed. As it has already been said, this happens because the power produced by the

turbine is proportional to u3.

4.7 Conclusions to the Chapter

In this chapter, the results obtained from the application of the physical model are exposed, highlighting

its areas of failure and the relative reasons. The physical model failed to reproduce the wind field within

the wind farm and therefore the wind speed experienced by any wind turbine. Also, no real possibility to

improve the model as it is was found because only one aspect is considered. Even in this aspect, the

phenomena considered are very limited compared to the ones actually happening in reality. To conclude

the chapter, some other reasons why the model did not work are listed. Among them, the main ones

seemed to be the lack of a study about the wind field before the installation of the turbines and the use

of 10-minute time gaps, which are too long to properly describe a stochastic resource like wind.
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Chapter 5

Empirical Model

After realising that the physical model exposed in Chapter 3 failed to predict the output, a new approach

to the problem was needed. Given the numerous shortcomings of the previous model, improving it

would have been far too complicated and time-consuming. Therefore, it was thought that the best way

to reproduce what actually happens in the wind farm was to use the measurements from the farm itself.

This way, all the elements would have been included even though it would have been impossible to

discern the contribution of each aspect. Because of this element, this model can be defined as a ”black

box”. To sum up, with this new approach, the deficits were not found from a wake model anymore, but

using the data from the turbines. The measurements would have been then used to perform a statistical

analysis of the conditions of the wind speed at the location of each turbine. Because of the nature of the

calculations, the model will be addressed as both empirical and statistical model.

5.1 Elements Maintained from the Physical Model

Even though the approach to the problem is completely different, some aspects of the physical model

could have been maintained. In fact, these elements were not strictly related to the wake models, but

nonetheless were extremely important in the formulation of the previous model. The elements that

remained unvaried are mainly two: the power curves and the list of unreliable turbines.

1. The power curves used previously were not changed as they did not have part in the failure of the

physical model. The power curves were found dividing the velocity in bins of the size of 0.5m/s

and calculating the median for the power of each bin after having eliminated the outliers. Their role

in the calculation of the deficits was marginal as they were used to know the power output from

which it was then possible to find Cp and consequently CT , which is required according to equation

(2.2). Afterwards, the power curves were used in order to find the output of each turbine after the

wind speed at that location was estimated.

2. Having found a list of unrealiable turbines previously to this second approach to the creation of

the model turned out to be an extremely useful aspect. In fact, since this second model is based
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on the data of the turbines themselves using data which cannot be trusted would have certainly

led to unreliable results. The turbines that were labelled as not reliable were overall 6, with 2

encountering problems mainly with the wind velocity and the remaining 4 having issues with the

wind direction

5.2 Inputs to the Model

As explained for the physical model in Section 3.5, also in this second approach to the prediction of the

power production the definition of two inputs is necessary. Again, one of the deficits will describe one

quality relative to the wind direction, while the other will allow to characterise the wind speed throughout

the whole wind farm.

5.2.1 1st Input: Speed

In this second model, the choice of the input relative to the wind speed was not as difficult as the

one made in Section 3.5.1. Because of the organisation of the data (exposed in Section 5.3) and the

calculations necessary to estimate the wind speed experienced by a particular turbine (explained by the

simple equation (5.1)) something able to describe the undisturbed wind speed was needed. The best

data able to describe such a property of the wind is the maximum speed measured by any of the turbines

within the wind farm. Obviously, the unreliable turbines were not considered when the maximum speed

umax was computed.

u = U∞ · (1−∆U) (5.1)

The maximum speed umax was chosen as the input relative to the wind speed because there was

no other possible data able to substitute the undisturbed conditions of the wind because of the lack of a

meteorological station (or met mast) external to the area limited by the turbines but still near enough to

be reliable also in the wind farm. The maximum wind speed was calculated by collecting all the data for

that particular time slot, eliminating the ones relative to the unreliable wind turbines and then identify the

maximum value among the ones left.

5.2.2 2nd Input: Direction

The other quality of the wind that was necessary to characterise was the direction the wind blows from.

Two possibilities were considered as possible inputs to the model: the average wind direction among the

turbines and the direction measured by the turbine experiencing the maximum wind speed, which again

would be considered the undisturbed wind. Some pros and cons were listed for both possibilities before

deciding on how to continue. For the average direction the following ideas were used to decide whether

this trait was a good choice:
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• It certainly suffers the influence of some factors that characterise the wind field within the wind

farm. These factors could be attributes of the whole area or just local ones that affect the wind only

in the surrounding area

• Since this value is obtained from several ones it is probably less influenced by these aspects as

some of them might delete one another. Consequently, an average value should be less affected

by these factors compared to a measured one

• If the model is kept as it is here formulated without the implementation of external data it should

be easier to estimate the average wind direction compared to the undisturbed one

On the other hand, the qualities relative to the direction of the undisturbed wind that were identified

were the following:

• If the one found is really the direction of the undisturbed wind, then it should not be affected by any

other turbine and it should consequently be more reliable than any other data available

• There might be problems when finding which one of the turbines experiences the highest wind

speed and therefore should be consulted in order to know the value of the direction of the undis-

turbed wind

• In order to solve this problem a table listing which turbine undergoes the highest wind speed

according to the wind direction could be created

The final choice was eventually the average wind direction. The main reason for this decision is

related to the last bullet point relative to the direction of the undisturbed wind. In fact, it would not be

possible to know which direction to consider in order to find the turbine experiencing the highest wind

speed if that same wind speed would be needed to find the direction itself. Using that solution would

create a circle that would not allow a proper solution.

In order to properly calculate the average wind direction, the data for the 10 minutes of time slot

were collected, then the data relative to the unreliable turbines eliminated and finally the requested data

computed.

5.3 Organisation of the Data

In this second model, the data from the measurements are divided according to the input relative to

the wind direction (average wind direction as explained in Section 5.2.2) and to the input related to the

wind speed entering the wind farm (maximum wind speed as disclosed in Section 5.2.1). The data

relative to the wind direction were organised in 36 bins representing angular sectors of 10◦ each. On the

other hand, the velocity data were collected in bins of the size of 0.5m/s, with the exception of the one

representing the lowest speed and the one representing the highest one. The speeds were divided into

these bins according to the following criteria:
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• if the wind speed was lower than 3m/s the data was part of the first bin

• if u ≥ 14m/s the data was collected in the last bin

• for values in between, data were gathered in a certain bin labelled by the median wind speed. To

better clarify, one piece of data was part of bin X if its value was within X − 0.25 and X + 0.25,

where X could have been a value like 3.25m/s, 3.75m/s, 4.25m/s up to 13.75m/s

Overall, the data was therefore collected depending on both the average wind direction and the

maximum wind speed. Consequently, having 36 bins for the wind direction and 24 for the wind velocity,

the global number of bins was 36 · 24 = 864 . Unfortunately, some specific conditions never happened

and consequently it was not possible to collect data in certain bins. The data from each turbine in a

certain time slot were thus collected depending on the average wind direction and the maximum wind

speed experienced by any of the turbines during those 10 minutes. After separating and collecting all

the data in the specific bin it was possible to average them. The turbine that was found to undergo

the highest average wind speed when those particular conditions happened was considered to be the

one experiencing the undisturbed wind. Consequently, the wind velocity at the location of that specific

turbine could be indicated as U∞. After obtaining the averages for each turbine in each bin in which data

were available it was possible to find a deficit describing the behaviour of that particular turbine when

those specific conditions (wind speed and direction) occurred. To do so, the reverse of equation (5.1)

was used:

∆U = 1− u

U∞
(5.2)

According to equation (5.2) and what has just been stated about the turbine experiencing the highest

wind velocity, such a turbine has deficit ∆U = 0. Using equation (5.1) and having all the deficits is then

possible to estimate the wind speed at the location of each turbine.

5.4 Solution for the Unreliable Turbines

The way the data were organised left the unreliable turbines without a deficit that would later be used to

estimate the wind velocity at their location, according to (5.1). Consequently, a method able to find the

value of the wind speed at those locations was needed. Given the unreliability of the deficits estimated

with the Jensen model, this option was discarded. Initially, the choice was to extrapolate the value of the

wind speed from the contour plots. When checking the results obtained from the extrapolation, it was

noted that the velocities were overestimated by a great deal and therefore this model was not considered

the most suitable. In the following attempt, the wind speed was found making a simple average among

the turbines that were nearer than 1km from the one analysed. The value of 1km can be considered a

good choice as the the highest minimum distance between any two turbines within the wind farm is equal

to 707m. Consequently, it could not happen that any of the unreliable turbines would remain without an
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estimated wind speed at its location. Even though the results produced by this method made sense, it

was thought that it could have still been improved.

Considering the simple average among the near turbines did not acknowledge in any way the dis-

tance from the measurements. Therefore, it was decided to give more importance to the data collected

by the anemometers nearest to the analysed turbine. The best way to do so was deemed to be a weighed

average using the reciprocal of the distances from the analysed turbine (indicated as T in Figure 5.1) as

weights.

Figure 5.1: Example of layout used for equations (5.3) and (5.4)

Figure 5.1 is used as support to explain the calculations carried out to find the wind speed at the

locations of the unreliable turbines, indicated with T. Assuming that each turbine is experiencing a wind

speed ux where x stands for the number of turbine and therefore varies between 1 and 5, the wind speed

at the location of T is calculated according to equation (5.3).

u =
1
d1
· u1 + 1

d2
· u2 + 1

d3
· u3 + 1

d4
· u4 + 1

d5
· u5

1
d1

+ 1
d2

+ 1
d3

+ 1
d4

+ 1
d5

(5.3)

In order to avoid making this calculation every time the program was launched and given that the

wind speed at a certain turbine is linearly proportional to the speed deficit (u ∝ ∆U according to (5.1))

the same formula was used to compute the deficits for the unreliable turbines. This way, the calculations

could be done just once and the final result was not modified in any way.

∆U =
1
d1
·∆U1 + 1

d2
·∆U2 + 1

d3
·∆U3 + 1

d4
·∆U4 + 1

d5
·∆U5

1
d1

+ 1
d2

+ 1
d3

+ 1
d4

+ 1
d5

(5.4)
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5.5 New Deficits

Giving a look to the deficits obtained is a good way to highlight the differences in results between the two

models. Since both the velocity and the direction gaps have different sizes in the two models, the tables

represent slightly different things. In fact, Table 3.1 shows the speed deficits valid for speeds ranging

between 5m/s and 6m/s while Table 5.1 is used when the velocity is between 5m/s and 5.5m/s and

Table 5.2 for values varying between 5.5m/s and 6m/s. In this section, two tables are reported so that

the same speed interval is covered. The differences in the results can be noted anyway because of the

significant discrepancies in the values of the deficits.

In Table 5.1, the boxes with deficit equal to 0 indicate the wind turbines that in those angular and

speed sectors experience the highest wind speed within the wind farm. By comparing Table 5.1 and

Table 3.1 it can be noted how the deficits found from the empirical model are significantly higher. This

most probably happens because all the aspects listed in Section 4.5 and Section 4.6 and possibly even

more are taken into account, even though it is not known to what extent. Also, it is easy to see how

for each angular sector there is only one deficit equal to 0 and that the amount of deficits close to that

same value is extremely limited. These aspects highlight once more how not enough disturbances were

considered in the physical model.

By comparing Table 5.1 and Table 5.2 it can be noted how the deficits are different even for the same

angular sector. This probably happens mainly for two reasons:

1. The different value for the thrust coefficient CT

2. The variability of the wind; in fact, even though the average conditions are extremely similar, the

conditions within the 10 minutes of the slot could be significantly different

The main reason is probably the second one, as CT should not vary significantly with a speed

difference of 0.5m/s and also because according to the Jensen model the deficit ∆U varies with C0.5
T .
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Table 5.1: Matrix containing the deficits for an average wind speed equal to 5.25m/s in a 10-minute slot for the empirical model
0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦ 180◦ 190◦ 200◦ 210◦ 220◦ 230◦ 240◦ 250◦ 260◦ 270◦ 280◦ 290◦ 300◦ 310◦ 320◦ 330◦ 340◦ 350◦

T1 0.075 0.120 0.081 0.268 0.206 0.240 0.150 0.137 0.235 0.268 0.215 0.090 0.013 0.117 0.136 0.228 0.119 0.204 0.288 0.264 0.186 0.233 0.153 0.175 0.090 0.120 0.165 0.164 0.152 0.103 0.278 0.357 0.233 0.061 0.033 0.010
T2 0.116 0.128 0.104 0.270 0.290 0.320 0.238 0.204 0.242 0.297 0.259 0.225 0.397 0.425 0.323 0.317 0.205 0.248 0.315 0.323 0.235 0.270 0.206 0.206 0.121 0.150 0.197 0.179 0.158 0.068 0.194 0.311 0.306 0.169 0.094 0.075
T3 0.104 0.143 0.142 0.235 0.384 0.335 0.241 0.255 0.248 0.295 0.254 0.155 0.262 0.440 0.386 0.357 0.199 0.254 0.312 0.329 0.254 0.266 0.213 0.199 0.113 0.141 0.194 0.166 0.150 0.126 0.327 0.388 0.255 0.084 0.088 0.080
T4 0.134 0.149 0.138 0.211 0.408 0.328 0.296 0.239 0.257 0.297 0.282 0.260 0.431 0.389 0.274 0.267 0.175 0.247 0.311 0.333 0.263 0.269 0.195 0.190 0.113 0.142 0.183 0.169 0.109 0.024 0.109 0.214 0.365 0.386 0.191 0.082
T5 0.128 0.173 0.159 0.229 0.391 0.311 0.283 0.294 0.289 0.322 0.297 0.169 0.219 0.399 0.411 0.496 0.270 0.265 0.330 0.357 0.310 0.280 0.206 0.190 0.126 0.155 0.189 0.173 0.114 0.061 0.238 0.348 0.290 0.125 0.112 0.080
T6 0.085 0.102 0.070 0.258 0.371 0.232 0.304 0.238 0.270 0.313 0.255 0.164 0.307 0.401 0.364 0.317 0.169 0.182 0.265 0.323 0.252 0.199 0.161 0.167 0.107 0.143 0.171 0.121 0.067 0.010 0.085 0.088 0.033 0.035 0.091 0.041
T7 0.117 0.157 0.228 0.320 0.338 0.356 0.382 0.256 0.256 0.209 0.197 0.140 0.155 0.121 0.156 0.291 0.182 0.261 0.311 0.382 0.301 0.224 0.134 0.157 0.061 0.094 0.096 0.105 0.175 0.265 0.404 0.351 0.074 0.031 0.039 0.060
T8 0.059 0.060 0.097 0.312 0.329 0.255 0.302 0.243 0.245 0.213 0.231 0.246 0.410 0.275 0.186 0.266 0.149 0.215 0.254 0.377 0.254 0.172 0.121 0.150 0.048 0.070 0.100 0.127 0.160 0.228 0.313 0.255 0.043 0 0 0.007
T9 0.142 0.092 0.147 0.246 0.512 0.358 0.325 0.363 0.357 0.253 0.305 0.341 0.343 0.175 0.192 0.316 0.194 0.221 0.340 0.443 0.276 0.244 0.205 0.218 0.106 0.170 0.220 0.211 0.220 0.176 0.264 0.406 0.391 0.201 0.080 0.073
T10 0.122 0.092 0.158 0.228 0.489 0.313 0.323 0.359 0.400 0.281 0.255 0.237 0.430 0.478 0.460 0.409 0.252 0.213 0.357 0.447 0.281 0.201 0.168 0.224 0.127 0.121 0.232 0.218 0.242 0.249 0.377 0.374 0.191 0.103 0.069 0.057
T11 0.111 0.032 0.162 0.166 0.471 0.269 0.272 0.415 0.389 0.328 0.262 0.207 0.439 0.402 0.270 0.322 0.180 0.235 0.363 0.412 0.227 0.247 0.203 0.168 0.096 0.150 0.214 0.250 0.240 0.214 0.303 0.397 0.303 0.128 0.053 0.030
T12 0.057 0.003 0.157 0.103 0.382 0.198 0.237 0.346 0.390 0.362 0.257 0.195 0.404 0.439 0.356 0.309 0.176 0.234 0.354 0.410 0.240 0.206 0.150 0.208 0.093 0.182 0.211 0.254 0.300 0.212 0.227 0.386 0.332 0.162 0.062 0.031
T13 0.077 0 0.075 0.071 0.128 0.161 0.202 0.346 0.274 0.276 0.179 0.133 0.209 0.316 0.261 0.218 0.070 0.143 0.286 0.318 0.127 0.180 0.099 0.186 0.086 0.158 0.291 0.249 0.175 0.134 0.078 0.035 0.016 0.032 0.050 0.038
T14 0.057 0.002 0.160 0.116 0.170 0.139 0.166 0.335 0.453 0.375 0.373 0.258 0.208 0.072 0.067 0.175 0.160 0.245 0.327 0.347 0.224 0.289 0.161 0.232 0.114 0.070 0.150 0.157 0.167 0.187 0.226 0.129 0.113 0.162 0.147 0.023
T15 0 0.015 0.078 0 0.148 0.143 0.210 0.309 0.269 0.314 0.259 0.235 0.167 0.095 0.133 0.366 0.242 0.256 0.292 0.343 0.238 0.153 0.021 0.081 0.147 0.283 0.345 0.165 0.061 0.012 0.054 0 0 0.033 0.050 0.073
T16 0.076 0.034 0.102 0.019 0.046 0.031 0.180 0.172 0.395 0.311 0.292 0.265 0.168 0.022 0.047 0.132 0.234 0.338 0.305 0.257 0.058 0.043 0.180 0.119 0.073 0.208 0.178 0.089 0.054 0.038 0.029 0.089 0.045 0.094 0.120 0.002
T17 0.129 0.077 0.054 0.042 0.041 0 0.159 0.201 0.338 0.267 0.274 0.167 0.064 0.126 0.160 0.225 0.406 0.471 0.314 0.163 0.022 0.012 0.019 0.020 0.025 0.027 0.063 0.068 0.076 0.070 0.036 0.158 0.092 0.140 0.176 0.055
T18 0.362 0.103 0.011 0.000 0.067 0.240 0.179 0.136 0.262 0.193 0.228 0.341 0.337 0.133 0.070 0.169 0.138 0.192 0 0 0 0 0 0 0 0 0.032 0.032 0.023 0.013 0.006 0.083 0.028 0.138 0.420 0.402
T19 0.170 0.065 0.081 0.077 0.133 0.121 0.181 0.200 0.318 0.273 0.263 0.185 0.146 0.075 0.117 0.227 0.218 0.277 0.208 0.193 0.084 0.087 0.065 0.067 0.060 0.057 0.065 0.063 0.057 0.057 0.096 0.190 0.174 0.187 0.220 0.110
T20 0.107 0.024 0.042 0.044 0.123 0.055 0.117 0.164 0.261 0.239 0.214 0.072 0.004 0.043 0.194 0.297 0.116 0.164 0.169 0.193 0.064 0.082 0.009 0.031 0.078 0.016 0 0 0 0.043 0.219 0.397 0.354 0.200 0.150 0
T21 0.221 0.108 0.135 0.114 0.287 0.182 0.234 0.246 0.330 0.293 0.249 0.150 0.272 0.160 0.140 0.236 0.235 0.293 0.268 0.346 0.191 0.152 0.104 0.072 0.082 0.115 0.066 0.134 0.142 0.060 0.039 0.200 0.403 0.491 0.285 0.143
T22 0.221 0.108 0.135 0.114 0.287 0.182 0.234 0.246 0.330 0.293 0.249 0.150 0.272 0.160 0.140 0.236 0.235 0.293 0.268 0.346 0.191 0.152 0.104 0.072 0.082 0.115 0.066 0.134 0.142 0.060 0.039 0.200 0.403 0.491 0.285 0.143
T23 0.237 0.136 0.133 0.245 0.224 0.217 0.293 0.205 0.279 0.299 0.277 0.131 0.082 0 0.077 0.285 0.381 0.401 0.212 0.128 0.086 0.067 0.077 0.062 0.049 0.039 0.061 0.053 0.028 0.025 0.002 0.076 0.041 0.112 0.252 0.158
T24 0.391 0.441 0.323 0.236 0.293 0.215 0.254 0.298 0.305 0.252 0.219 0.134 0.141 0.073 0.162 0.348 0.370 0.447 0.255 0.188 0.151 0.137 0.109 0.111 0.073 0.066 0.082 0.062 0.047 0.058 0.029 0.086 0.085 0.180 0.460 0.441
T25 0.377 0.321 0.220 0.222 0.276 0.222 0.238 0.235 0.241 0.176 0.194 0.132 0.134 0.097 0.205 0.373 0.418 0.469 0.277 0.203 0.157 0.129 0.118 0.126 0.073 0.063 0.082 0.065 0.055 0.044 0.029 0.084 0.070 0.148 0.398 0.409
T26 0.412 0.334 0.234 0.197 0.308 0.274 0.210 0.194 0.201 0.083 0.154 0.136 0.139 0.118 0.272 0.449 0.497 0.528 0.339 0.266 0.196 0.168 0.152 0.178 0.090 0.075 0.094 0.079 0.075 0.049 0.045 0.094 0.076 0.138 0.391 0.458
T27 0.424 0.269 0.107 0.218 0.244 0.154 0.205 0.224 0.164 0.090 0.140 0.121 0.161 0.194 0.281 0.370 0.400 0.470 0.273 0.193 0.165 0.107 0.114 0.126 0.065 0.059 0.082 0.057 0.059 0.032 0.028 0.072 0.062 0.146 0.444 0.507
T28 0.355 0.188 0.022 0.146 0.237 0.128 0.216 0.137 0.150 0.070 0.152 0.168 0.227 0.209 0.262 0.344 0.386 0.453 0.260 0.153 0.107 0.081 0.095 0.090 0.033 0.030 0.060 0.034 0.039 0.010 0.013 0.038 0.038 0.100 0.392 0.453
T29 0.357 0.126 0 0.057 0.178 0.104 0.086 0.104 0.195 0.273 0.176 0.081 0.218 0.234 0.205 0.289 0.345 0.428 0.218 0.096 0.062 0.054 0.059 0.067 0.001 0.000 0.043 0.032 0.037 0 0 0.047 0.023 0.126 0.418 0.474
T30 0.338 0.215 0.087 0.225 0.214 0.157 0.151 0.142 0.186 0.156 0.166 0.154 0.198 0.175 0.236 0.350 0.369 0.468 0.295 0.198 0.139 0.139 0.123 0.146 0.078 0.064 0.092 0.098 0.101 0.055 0.064 0.114 0.142 0.267 0.450 0.464
T31 0.339 0.273 0.140 0.256 0.286 0.186 0.224 0.193 0.207 0.173 0.236 0.311 0.239 0.131 0.215 0.352 0.341 0.518 0.351 0.211 0.147 0.155 0.151 0.172 0.089 0.068 0.097 0.090 0.101 0.042 0.042 0.116 0.206 0.468 0.567 0.492
T32 0.420 0.262 0.081 0.312 0.175 0.187 0.095 0.109 0.163 0.109 0.122 0.065 0.154 0.130 0.241 0.352 0.362 0.411 0.171 0.170 0.162 0.177 0.165 0.187 0.079 0.059 0.083 0.065 0.077 0.021 0.023 0.075 0.065 0.169 0.438 0.547
T33 0.376 0.380 0.181 0.270 0.184 0.165 0.076 0.102 0.114 0.030 0.103 0.168 0.202 0.172 0.248 0.390 0.405 0.416 0.189 0.225 0.204 0.210 0.182 0.247 0.098 0.087 0.113 0.080 0.092 0.058 0.061 0.092 0.169 0.341 0.517 0.528
T34 0.420 0.333 0.177 0.221 0.135 0.116 0.053 0.091 0.083 0.032 0.118 0.180 0.246 0.130 0.188 0.305 0.322 0.447 0.271 0.254 0.208 0.204 0.175 0.284 0.109 0.080 0.126 0.079 0.106 0.048 0.054 0.096 0.205 0.407 0.536 0.504
T35 0.414 0.251 0.188 0.177 0.126 0.073 0.114 0.172 0.181 0.061 0.039 0.057 0.146 0.189 0.161 0.248 0.332 0.425 0.197 0.121 0.144 0.141 0.130 0.248 0.102 0.063 0.112 0.069 0.112 0.061 0.049 0.104 0.176 0.249 0.498 0.536
T36 0.348 0.195 0.155 0.093 0.031 0.099 0 0.219 0 0 0.127 0.214 0.174 0.063 0.032 0.114 0.266 0.400 0.176 0.087 0.085 0.080 0.060 0.181 0.067 0.018 0.075 0.030 0.059 0.018 0.016 0.061 0.132 0.271 0.505 0.489
T37 0.387 0.203 0.136 0.152 0.060 0.076 0.069 0.147 0.135 0.038 0 0.066 0.062 0.055 0.052 0.085 0.245 0.366 0.161 0.062 0.036 0.048 0.061 0.159 0.088 0.026 0.088 0.035 0.037 0.020 0.044 0.090 0.118 0.184 0.460 0.502
T38 0.346 0.239 0.131 0.125 0.036 0.067 0.040 0.124 0.068 0.023 0.035 0.086 0.073 0.048 0.032 0.069 0.182 0.273 0.123 0.058 0.053 0.080 0.089 0.158 0.101 0.078 0.112 0.039 0.070 0.067 0.061 0.105 0.151 0.218 0.419 0.432
T39 0.274 0.340 0.103 0.110 0 0.023 0.031 0 0.020 0.019 0.008 0 0 0.024 0 0 0 0 0.011 0.025 0.053 0.135 0.164 0.134 0.153 0.219 0.187 0.056 0.136 0.189 0.130 0.170 0.224 0.225 0.270 0.264
T40 0.321 0.279 0.163 0.162 0.088 0.210 0.187 0.144 0.088 0.047 0.053 0.057 0.061 0.075 0.054 0.137 0.096 0.135 0.274 0.400 0.265 0.231 0.174 0.304 0.180 0.108 0.227 0.076 0.095 0.175 0.158 0.202 0.270 0.328 0.403 0.413
T41 0.240 0.214 0.114 0.122 0.170 0.167 0.143 0.138 0.118 0.048 0.091 0.057 0.099 0.088 0.101 0.192 0.109 0.165 0.225 0.202 0.173 0.195 0.187 0.323 0.227 0.126 0.123 0.055 0.067 0.089 0.143 0.231 0.342 0.350 0.388 0.362
T42 0.227 0.197 0.130 0.138 0.143 0.102 0.083 0.132 0.088 0.057 0.099 0.058 0.103 0.073 0.117 0.201 0.250 0.299 0.264 0.359 0.229 0.159 0.119 0.192 0.044 0.023 0.082 0.181 0.347 0.416 0.334 0.279 0.278 0.251 0.186 0.241
T43 0.218 0.212 0.103 0.249 0.108 0.094 0.143 0.110 0.131 0.350 0.445 0.456 0.308 0.119 0.183 0.309 0.196 0.222 0.325 0.351 0.222 0.167 0.138 0.207 0.087 0.066 0.106 0.099 0.116 0.259 0.339 0.294 0.387 0.383 0.250 0.290
T44 0.402 0.271 0.124 0.239 0.143 0.105 0.084 0.162 0.124 0.070 0.175 0.232 0.399 0.265 0.267 0.295 0.279 0.314 0.328 0.381 0.211 0.250 0.158 0.224 0.172 0.161 0.105 0.100 0.209 0.226 0.216 0.290 0.285 0.364 0.499 0.547
T45 0.326 0.236 0.265 0.431 0.178 0.134 0.103 0.157 0.195 0.105 0.136 0.114 0.192 0.269 0.344 0.405 0.393 0.550 0.453 0.350 0.203 0.199 0.194 0.193 0.146 0.195 0.163 0.185 0.233 0.153 0.208 0.270 0.289 0.388 0.536 0.504
T46 0.227 0.227 0.040 0.263 0.186 0.221 0.154 0.131 0.175 0.087 0.093 0.086 0.102 0.074 0.202 0.407 0.435 0.427 0.308 0.274 0.207 0.227 0.108 0.208 0.167 0.084 0.141 0.230 0.165 0.152 0.163 0.183 0.255 0.258 0.266 0.293
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Table 5.2: Matrix containing the deficits for an average wind speed equal to 5.75m/s in a 10-minute slot for the empirical model
0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦ 180◦ 190◦ 200◦ 210◦ 220◦ 230◦ 240◦ 250◦ 260◦ 270◦ 280◦ 290◦ 300◦ 310◦ 320◦ 330◦ 340◦ 350◦

T1 0.024 0.152 0.019 0.271 0.012 0.141 0.111 0.250 0.342 0.245 0.249 0.122 0.004 0.030 0.143 0.192 0.227 0.155 0.265 0.295 0.296 0.283 0.185 0.175 0.168 0.112 0.159 0.130 0.183 0.098 0.279 0.368 0.212 0.040 0.011 0
T2 0.072 0.199 0.079 0.309 0.062 0.211 0.085 0.264 0.410 0.303 0.333 0.293 0.315 0.431 0.302 0.306 0.317 0.253 0.283 0.310 0.340 0.325 0.199 0.203 0.220 0.143 0.183 0.153 0.187 0.083 0.193 0.359 0.314 0.137 0.047 0.044
T3 0.040 0.177 0.115 0.337 0.094 0.222 0.078 0.279 0.456 0.273 0.292 0.166 0.169 0.360 0.367 0.352 0.305 0.264 0.269 0.304 0.378 0.320 0.203 0.215 0.179 0.141 0.183 0.150 0.183 0.113 0.328 0.409 0.235 0.116 0.060 0.056
T4 0.064 0.204 0.145 0.288 0.102 0.232 0.096 0.299 0.439 0.291 0.324 0.354 0.416 0.363 0.242 0.288 0.277 0.276 0.261 0.297 0.404 0.329 0.213 0.179 0.172 0.155 0.194 0.158 0.140 0.054 0.130 0.252 0.389 0.375 0.192 0.085
T5 0.055 0.215 0.149 0.362 0.143 0.217 0.187 0.360 0.463 0.335 0.328 0.194 0.150 0.296 0.481 0.533 0.403 0.274 0.251 0.341 0.434 0.322 0.215 0.197 0.180 0.165 0.181 0.152 0.162 0.078 0.224 0.404 0.264 0.113 0.056 0.069
T6 0.018 0.170 0.073 0.252 0.155 0.172 0.169 0.329 0.432 0.304 0.319 0.198 0.217 0.401 0.391 0.345 0.270 0.225 0.202 0.343 0.378 0.257 0.170 0.175 0.149 0.148 0.161 0.117 0.122 0.028 0.106 0.097 0.041 0.011 0.024 0.022
T7 0.031 0.224 0.268 0.500 0.229 0.271 0.189 0.335 0.353 0.368 0.246 0.154 0.148 0.086 0.177 0.263 0.327 0.265 0.249 0.350 0.386 0.256 0.159 0.196 0.120 0.089 0.112 0.134 0.200 0.243 0.422 0.317 0.089 0.030 0.024 0.083
T8 0 0.153 0.131 0.400 0.229 0.225 0.139 0.308 0.324 0.336 0.263 0.359 0.345 0.270 0.169 0.225 0.274 0.206 0.214 0.354 0.339 0.219 0.133 0.151 0.100 0.079 0.115 0.140 0.163 0.204 0.327 0.229 0.050 0.005 0 0.020
T9 0.058 0.186 0.183 0.359 0.378 0.355 0.178 0.359 0.420 0.406 0.309 0.398 0.281 0.146 0.196 0.297 0.312 0.255 0.314 0.422 0.334 0.276 0.185 0.196 0.155 0.179 0.232 0.220 0.223 0.170 0.287 0.428 0.407 0.163 0.067 0.095
T10 0.062 0.186 0.256 0.249 0.376 0.353 0.198 0.432 0.427 0.404 0.289 0.261 0.358 0.518 0.500 0.450 0.328 0.263 0.356 0.394 0.296 0.251 0.169 0.206 0.184 0.141 0.230 0.206 0.259 0.198 0.370 0.356 0.188 0.083 0.061 0.102
T11 0.047 0.152 0.221 0.197 0.345 0.297 0.117 0.356 0.442 0.412 0.292 0.259 0.368 0.420 0.298 0.325 0.266 0.249 0.352 0.369 0.269 0.283 0.185 0.151 0.148 0.143 0.204 0.225 0.236 0.195 0.310 0.385 0.318 0.099 0.055 0.066
T12 0.033 0.124 0.184 0.202 0.239 0.211 0.127 0.358 0.438 0.416 0.288 0.212 0.309 0.469 0.399 0.342 0.243 0.247 0.316 0.363 0.282 0.231 0.139 0.211 0.149 0.156 0.218 0.221 0.278 0.204 0.242 0.366 0.361 0.101 0.044 0.034
T13 0.091 0.137 0.035 0.066 0.132 0.185 0.256 0.310 0.340 0.376 0.231 0.104 0.161 0.313 0.316 0.252 0.154 0.159 0.239 0.251 0.205 0.210 0.097 0.171 0.151 0.162 0.293 0.218 0.167 0.135 0.079 0.040 0.043 0.009 0.014 0.025
T14 0.029 0.060 0.044 0.154 0.200 0.102 0.159 0.343 0.470 0.458 0.415 0.311 0.152 0.046 0.112 0.193 0.220 0.238 0.285 0.319 0.238 0.306 0.153 0.221 0.158 0.088 0.176 0.143 0.169 0.204 0.243 0.102 0.098 0.140 0.111 0.036
T15 0.024 0 0.033 0.221 0.022 0.072 0.083 0.245 0.315 0.393 0.365 0.295 0.148 0.040 0.190 0.397 0.338 0.258 0.259 0.276 0.238 0.169 0.029 0.133 0.140 0.304 0.286 0.120 0.041 0.007 0.090 0.057 0.032 0.029 0.036 0.075
T16 0.005 0.037 0.019 0.157 0.015 0.034 0.141 0.286 0.356 0.358 0.319 0.306 0.148 0.010 0.073 0.179 0.284 0.316 0.323 0.230 0.068 0.030 0.198 0.119 0.100 0.207 0.141 0.070 0.092 0.049 0.078 0.051 0.059 0 0.026 0.016
T17 0.028 0.052 0.036 0 0 0 0.112 0.221 0.283 0.339 0.287 0.172 0.064 0.116 0.196 0.239 0.441 0.468 0.329 0.115 0.013 0.010 0.035 0.014 0.030 0.048 0.080 0.079 0.099 0.057 0.093 0.099 0.105 0.073 0.075 0.070
T18 0.249 0.108 0.003 0.027 0.045 0.163 0.025 0.131 0.199 0.277 0.291 0.369 0.292 0.152 0.080 0.120 0.175 0.154 0 0.002 0 0 0.017 0 0.006 0.022 0.054 0.045 0.046 0.014 0.043 0.030 0.047 0.076 0.376 0.460
T19 0.091 0.084 0.041 0.134 0.143 0.096 0.091 0.233 0.317 0.348 0.286 0.206 0.131 0.081 0.145 0.240 0.262 0.248 0.197 0.160 0.083 0.096 0.069 0.063 0.087 0.059 0.075 0.064 0.070 0.061 0.143 0.157 0.186 0.109 0.147 0.131
T20 0.034 0.054 0 0.154 0.160 0.034 0 0.210 0.309 0.306 0.219 0.065 0.018 0.068 0.240 0.353 0.182 0.120 0.155 0.148 0.060 0.113 0.003 0.029 0.117 0 0 0 0 0.058 0.287 0.388 0.379 0.088 0.078 0.020
T21 0.158 0.158 0.086 0.222 0.256 0.203 0.120 0.289 0.378 0.376 0.266 0.186 0.258 0.146 0.133 0.224 0.267 0.258 0.219 0.295 0.194 0.165 0.099 0.064 0.143 0.087 0.082 0.140 0.123 0.046 0.076 0.195 0.425 0.440 0.197 0.104
T22 0.158 0.158 0.086 0.222 0.256 0.203 0.120 0.289 0.378 0.376 0.266 0.186 0.258 0.146 0.133 0.224 0.267 0.258 0.219 0.295 0.194 0.165 0.099 0.064 0.143 0.087 0.082 0.140 0.123 0.046 0.076 0.195 0.425 0.440 0.197 0.104
T23 0.137 0.141 0.150 0.221 0.311 0.179 0.204 0.219 0.279 0.390 0.279 0.154 0.076 0.030 0.100 0.269 0.387 0.370 0.202 0.101 0.069 0.065 0.079 0.054 0.051 0.050 0.087 0.062 0.061 0.021 0.041 0.018 0.036 0.017 0.164 0.206
T24 0.339 0.319 0.284 0.293 0.291 0.158 0.217 0.287 0.319 0.339 0.218 0.148 0.137 0.096 0.209 0.339 0.411 0.396 0.243 0.174 0.125 0.122 0.107 0.095 0.077 0.071 0.108 0.087 0.066 0.041 0.054 0.046 0.068 0.101 0.413 0.456
T25 0.322 0.293 0.259 0.263 0.289 0.217 0.156 0.251 0.241 0.300 0.212 0.149 0.157 0.109 0.237 0.365 0.441 0.424 0.301 0.192 0.119 0.130 0.103 0.105 0.080 0.067 0.109 0.085 0.063 0.026 0.047 0.044 0.058 0.084 0.330 0.432
T26 0.350 0.329 0.315 0.265 0.286 0.295 0.099 0.261 0.197 0.268 0.184 0.153 0.198 0.127 0.309 0.446 0.508 0.474 0.380 0.251 0.147 0.176 0.123 0.147 0.105 0.079 0.125 0.099 0.066 0.021 0.055 0.057 0.064 0.080 0.301 0.466
T27 0.420 0.333 0.223 0.247 0.271 0.222 0.103 0.201 0.151 0.206 0.186 0.141 0.198 0.175 0.290 0.360 0.429 0.438 0.356 0.209 0.106 0.124 0.084 0.099 0.069 0.058 0.106 0.081 0.057 0.014 0.028 0.042 0.050 0.125 0.393 0.548
T28 0.392 0.244 0.209 0.268 0.245 0.194 0.053 0.113 0.118 0.194 0.156 0.192 0.247 0.195 0.273 0.311 0.417 0.393 0.279 0.158 0.064 0.097 0.046 0.073 0.044 0.040 0.076 0.061 0.038 0.009 0.016 0.020 0.017 0.060 0.314 0.476
T29 0.374 0.178 0.171 0.227 0.187 0.156 0.027 0.083 0.199 0.262 0.213 0.091 0.247 0.251 0.211 0.263 0.367 0.376 0.229 0.086 0.019 0.063 0 0.036 0 0.000 0.048 0.045 0.009 0 0 0 0 0.115 0.389 0.480
T30 0.326 0.242 0.246 0.232 0.215 0.186 0.095 0.153 0.147 0.230 0.204 0.174 0.234 0.194 0.253 0.316 0.401 0.396 0.305 0.177 0.105 0.156 0.070 0.105 0.083 0.068 0.092 0.107 0.079 0.044 0.070 0.085 0.111 0.239 0.417 0.450
T31 0.301 0.259 0.311 0.188 0.214 0.197 0.210 0.230 0.127 0.253 0.293 0.326 0.266 0.175 0.226 0.288 0.384 0.444 0.382 0.182 0.116 0.173 0.091 0.137 0.080 0.076 0.111 0.104 0.074 0.031 0.055 0.091 0.150 0.452 0.544 0.471
T32 0.398 0.286 0.320 0.244 0.216 0.201 0.142 0.149 0.151 0.221 0.143 0.111 0.263 0.162 0.244 0.348 0.417 0.280 0.163 0.148 0.124 0.187 0.110 0.148 0.057 0.068 0.089 0.091 0.059 0.007 0.029 0.069 0.049 0.109 0.392 0.537
T33 0.359 0.371 0.395 0.252 0.181 0.176 0.179 0.134 0.086 0.168 0.163 0.188 0.279 0.233 0.279 0.392 0.460 0.303 0.184 0.203 0.181 0.229 0.131 0.177 0.094 0.095 0.111 0.121 0.101 0.026 0.058 0.092 0.103 0.312 0.515 0.495
T34 0.408 0.359 0.273 0.189 0.192 0.132 0.047 0.088 0.096 0.130 0.153 0.207 0.291 0.147 0.230 0.285 0.382 0.413 0.277 0.218 0.193 0.228 0.131 0.174 0.098 0.097 0.103 0.116 0.100 0.028 0.044 0.090 0.163 0.346 0.527 0.445
T35 0.450 0.317 0.197 0.219 0.184 0.124 0.134 0.101 0.157 0.105 0.113 0.048 0.185 0.222 0.159 0.266 0.288 0.318 0.197 0.109 0.100 0.147 0.096 0.128 0.079 0.086 0.096 0.099 0.109 0.039 0.049 0.082 0.127 0.208 0.465 0.510
T36 0.362 0.240 0.125 0.145 0.190 0.160 0.093 0.019 0 0.047 0.164 0.231 0.145 0.057 0.045 0.184 0.242 0.301 0.212 0.055 0.033 0.091 0.044 0.083 0.058 0.062 0.084 0.067 0.087 0.005 0.014 0.031 0.087 0.241 0.470 0.462
T37 0.412 0.256 0.076 0.137 0.163 0.096 0.225 0.158 0.120 0.067 0.023 0.037 0.029 0.022 0.025 0.183 0.201 0.281 0.199 0.046 0.014 0.050 0.011 0.075 0.041 0.060 0.069 0.078 0.083 0.030 0.027 0.059 0.082 0.165 0.434 0.500
T38 0.367 0.298 0.102 0.152 0.157 0.103 0.140 0.078 0.067 0.043 0.053 0.076 0.051 0.025 0.023 0.132 0.155 0.208 0.161 0.035 0.030 0.103 0.053 0.070 0.074 0.115 0.104 0.072 0.116 0.066 0.051 0.067 0.123 0.192 0.393 0.416
T39 0.297 0.420 0.123 0.184 0.118 0.062 0.041 0 0.039 0 0 0 0 0 0 0 0 0 0.049 0 0.054 0.200 0.130 0.050 0.142 0.256 0.180 0.067 0.196 0.182 0.124 0.112 0.222 0.192 0.254 0.235
T40 0.332 0.316 0.202 0.266 0.197 0.223 0.163 0.097 0.085 0.074 0.089 0.044 0.094 0.073 0.069 0.107 0.155 0.125 0.266 0.328 0.246 0.225 0.166 0.194 0.174 0.116 0.222 0.103 0.142 0.135 0.133 0.177 0.291 0.293 0.371 0.342
T41 0.269 0.288 0.229 0.263 0.191 0.143 0.060 0.144 0.125 0.123 0.143 0.078 0.114 0.089 0.103 0.191 0.234 0.125 0.160 0.167 0.176 0.232 0.164 0.245 0.252 0.118 0.115 0.111 0.103 0.100 0.121 0.192 0.353 0.340 0.395 0.352
T42 0.207 0.240 0.190 0.241 0.237 0.159 0.035 0.138 0.097 0.124 0.128 0.087 0.143 0.109 0.121 0.232 0.349 0.214 0.170 0.305 0.262 0.192 0.094 0.120 0.071 0.018 0.093 0.169 0.384 0.410 0.323 0.252 0.290 0.207 0.228 0.186
T43 0.194 0.221 0.203 0.257 0.168 0.123 0.022 0.165 0.186 0.253 0.442 0.531 0.332 0.142 0.197 0.304 0.298 0.207 0.306 0.301 0.244 0.212 0.119 0.116 0.121 0.086 0.100 0.123 0.088 0.219 0.325 0.290 0.399 0.349 0.316 0.241
T44 0.391 0.278 0.278 0.288 0.222 0.152 0.054 0.155 0.133 0.200 0.173 0.292 0.394 0.276 0.267 0.275 0.332 0.241 0.333 0.352 0.189 0.265 0.122 0.152 0.199 0.158 0.102 0.096 0.202 0.220 0.225 0.246 0.279 0.307 0.455 0.549
T45 0.263 0.291 0.281 0.262 0.243 0.186 0.044 0.171 0.140 0.202 0.170 0.131 0.219 0.266 0.381 0.360 0.440 0.502 0.456 0.305 0.187 0.226 0.143 0.122 0.175 0.208 0.148 0.170 0.223 0.130 0.218 0.222 0.282 0.351 0.531 0.458
T46 0.225 0.239 0.197 0.251 0.208 0.197 0.044 0.152 0.122 0.198 0.148 0.104 0.131 0.090 0.247 0.400 0.426 0.341 0.298 0.245 0.180 0.248 0.074 0.144 0.208 0.063 0.100 0.220 0.129 0.132 0.165 0.170 0.213 0.223 0.235 0.257
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5.6 Degradation of the Wind

Just like it has been done for the physical model in Section 4.1, here the spatial evolution of the wind

velocity field is analysed. Once again, the degradation of the wind is studied starting from the deficits

like the ones shown in Table 5.1. Also, just like in Section 4.1 the best way to study the wind speed

throughout the wind farm is the use of the contour plots. These contour plots are organised like the

ones in Figures 4.1 and 4.2, with the black dots indicating the locations of the wind turbines and the

vector representing both the inputs. In both cases, the speed and the magnitude of the vector represent

the undisturbed wind, i.e. the maximum wind speed experienced by any of the turbines. Again, the

direction is given by the average of all the wind directions recorded by the turbines for both the contour

plot obtained from the model and the one found using the measurements. In Figure 5.2, the contour

plot describing the results of the model is shown. On the other hand, the plot obtained from the data

is reported in Figure 5.3. As it happened for the physical model, the results of the model do not really

resemble the measurements. However, although the contours are of significantly different shape, the

values of the wind speeds are closer than in the case of the physical model exposed in Figures 4.1 and

4.2. These results highlight the variable nature of the wind, because not even using measurements of

the wind turbines themselves it was possible to reproduce the actual wind velocity field within the wind

farm. As it has been done for the physical model in Section 4.1, the time slot analysed has been chosen

randomly in order not to affect the results of the whole research. Again, the results outside of the limit

of the turbines are not reliable as there are no measurements outside of that area in order to limit the

evolution of the function elaborated by the program in order to create the plots.

Figure 5.2: Contour plot representing the spatial degradation of the wind on 10/05/2016 at 03 : 00
according to the empirical model
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Figure 5.3: Contour plot representing the spatial degradation of the wind on 10/05/2016 at 03 : 00
according to the wind data

5.7 Comparison of the Wind Speed at the Turbines

As it has been done in Section 4.3, the speeds estimated at the location of the turbines and the one

measured by the anemometers were compared in order to further check the validity of the results and of

the model itself. On the x-axis, the identification number of the turbine is ideally reported, while on the

y-axis there is the wind speed that has been either computed or measured. As the legends in Figure 5.4

show, the estimations of the model and the measurements are reported with a blue X and a red circle,

respectively. As in the previous examples reported throughout the whole essay, the time slots used in

these graphs has been selected randomly.

Figure 5.4(a) reports a good set of results, at least as far as the points on the right hand side of

the graph are considered. It can be noted how the behaviour predicted by the model reproduces the

measured behaviour in a satisfying way, at least on the right side. However, the comparison is not as

good on the left hand side, where the model seems to be able to ”understand” which turbines are the

fastest among that group but fails to calculate the right value of the wind speed. Another discrepancy

that can be seen in Figure 5.4(a) is the turbine experiencing the highest velocity within the wind farm.

According to the measurements such a turbine is among the ones here represented in the left side of

the graph, while according to the results of the model it is on the other side. This means that the two

turbines are far away one from the other. This fact emphasises once more the variability typical of the

wind because even though averagely the wind speed is fastest at the location of a certain turbine, it can

happen that in other cases it is another one (far away from it, in addition) undergoing the greatest speed.

This happens even though the wind conditions are extremely similar as the wind speed and direction

are contained in the same bins.
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In Figure 5.4(b), a not-as-good example is reported. In this case the results of the model do not

resemble the measurement in any significant way. However, there is one characteristic in common with

Figure 5.4(a), as the results reported on the right hand side of the graph have values closer to the

measurements compared to the ones shown on the left hand side. This might mean that the model

better predicts and reproduces the behaviour of those turbines. Again, like in Figure 5.4(a) the wind

turbine that measures the highest value for the wind velocity is different from the one averagely doing it.

(a) First comparison

(b) Second comparison

Figure 5.4: Two comparisons of the wind speed at the location of each turbine according to the empirical
model

5.8 Prediction of the Wind Farm Production

Despite in some cases the results of the model failed to reproduce the behaviour of the wind speed at

each turbine, an attempt to predict the output of the whole wind farm was made. Since the predicted

velocity values at the locations of some turbines were overestimated compared to the measurements
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while in others they were underestimated it could be possible that these errors compensate each other,

leading to an overall value for the power output that resembled the actual one. The full results of the

3 months that have been simulated are reported in Appendix C. In this section, some examples of the

comparisons during short periods of time are reported. To verify the coherence of the results of the

model with the measurements the Mean Error (ME) has been initially calculated and reported in the

various graphs. The ME is calculated as reported in equation (5.5):

ME =

n∑
t=1

Emeasured,t − Emodel,t

n
(5.5)

where t indicates the time slot and n the number of time slots in the interval of time considered.

Given the possibility that the prediction might be either higher or lower than the measurements, it

was thought that the ME was not the most suitable choice. In fact, the ME does consider the sign of the

numerator and therefore can lead to wrong conclusions. This may happen because an error in which

the model overestimates the production by a great deal can ”delete” several other errors in which the

result of the model was an underestimation. To solve this issue, the Mean Absolute Error (MAE) was

used instead of the ME. As it can be seen in the definition of the MAE in equation (5.6), the difference

between the two is small but significant.

MAE =

n∑
t=1
|Emeasured,t − Emodel,t|

n
(5.6)

The absolute error has been preferred to the relative one because if the measured energy is low

the latter error increases dramatically. The most extreme possible consequence possible of this aspect

would have happened when predicting the whole month of December 2016 (which results are shown in

Figure C.6 in Appendix C). In this case, having for a certain period of time a production of energy exactly

equal to 0, the percentage error would have been infinite.

Figure 5.5: Comparison between measurements and results of the empirical model relative to the power
output during the 1st week of October 2016
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In Figure 5.5 the prediction of the energy output of the entire wind farm is compared with the measure-

ments collected during the same time span. On the y-axis the energy produced during each 10-minute

time slot and expressed in kWh is measured, while on the x-axis the time is reported but not shown.

Figure 5.5 shows how the model is able to reproduce the behaviour of the wind farm during a somewhat

long period of time, replicating also part of the temporary fluctuations. However, the model at times fails

to properly predict the output and either overpredicts or underpredicts the output by a significan amount.

Even though in these cases the error is significant in terms of absolute value, the relative error does not

reach high values. In fact, the MAE estimated during this period of time is equal to 1233.6903kWh, which

divided by the maximum energy reached during this interval is equal to 7%.

Figure 5.6: Comparison between measurements and results of the empirical model relative to the power
output on 26/10/2016

Figure 5.6 shows the prediction during a single day and compares it with the actual data. It can be

easily seen how in this case the model was able to produce satisfactory results. The MAE reported in

the notes below the x-axis is equal to 761.222kWh, which is lower than the MAE of the month (reported

in Figure C.1 in Appendix C). If this value is divided by the maximum energy measured, the percentage

error is between 7% and 8%, which is not too high.

The same happens also in Figure 5.7, where the comparison is made for a single day in November.

Differently from Figure 5.6, in Figure 5.7 there is also a spike in which the model overpredicts significantly

the output. Certainly this spike affects the value of the MAE and increases it considerably. Given the

somewhat long duration of the spike it is not realistic to say that the cause for the spike was a wind

gust (or a series of). It is possible that a higher-speed air current went across a limited area of the

wind farm affecting only a limited amount of turbines. Even though the turbines affected might have

been just a few, the model suffered more severe consequences as it assumed that that one was the

undisturbed wind speed entering the whole wind farm. In this case the Mean Absolute Error is equal to

1072.12kWh, which is pretty high if we consider that for around half of the day the measured energy is

below 2000kWh. However, if we consider that it also peaks around 11000kWh, the final result can be

considered satisfactory.
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Figure 5.7: Comparison between measurements and results of the empirical model relative to the power
output on 27/11/2016

Given the nature of the previous graphs, analysing them further by looking at the evolution of the dif-

ference between the results of the model and the real measurements can help in making additional ob-

servations. It is important to mention that the difference in value is reported in absolute terms, therefore

with this graph alone periods of overprediction and periods of underprediction cannot be distinguished.

For example, Figure 5.8 shows the evolution of the difference in value during the day 27/11/2016. It

was chosen to analyse this particular date because it perfectly highlights some of the differences in re-

sults between this model and the one exposed in Chapter 7. The difference is rather limited in absolute

terms, except for the spike already highlighted when Figure 5.7 was described. In fact, the difference

between the measurements and the prediction is below 1000kWh for a good part of the day. However, it

is important to state that the spike in difference reaches a value close to 7000kWh.

Figure 5.8: Difference between the prediction and the measurements on 27/11/2016
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5.9 Standard Deviation of the Speeds

As it has been noted and stated throughout the last few sections, this second model did not always

produce results that resembled the measurements. One reason that has been already mentioned is the

variability of the wind in both time and space. In order to highlight the variable nature of the wind, the

standard deviations σ of the velocities at the locations of the turbines during the period of time used to

create the deficits were estimated. Since the estimation of the deficits required to deal with discrete data

and not with a continuous function, the standard deviation has been estimated as shown in equation

(5.7):

σ =

√√√√ 1

N − 1

N∑
i=1

|ui − u|2 (5.7)

where u is the mean of the wind speed during the period of time analysed:

u =
1

N

N∑
i=1

ui (5.8)

with N indicatng the amount of data considered during the calculations of the standard deviation σ.

In Table 5.3 and Table 5.4, the values of the standard deviations for the same wind conditions as

the ones relative to Table 5.1 and Table 5.2 are shown. The cases in which the standard deviation is

equal to 0 indicate that the data relative to those turbines were not considered as the turbine was among

the group of the unreliable ones. In Table 5.3, the standard deviation ranges between 0.348m/s and

1.845m/s. On the other hand, in Table 5.4, the highest and lowest values are 1.933m/s and 0.200m/s,

respectively. In both cases, a lot of the values reported in the tables are close to 1m/s. Considering

that the tables are relative to the wind speeds between 5m/s and 5.5m/s for the former and between

5.5m/s and 6m/s for the latter, it can be said that the values of the standard deviations are rather high.

This is because of the variable and stochastic nature of the wind. These values prove what has been

mentioned before about the cause for the lack of coherent results. In fact, if the standard deviation of

the measurements can go up to 1.933m/s when collecting data which highest possible value is 6m/s, a

coefficient obtained using that same data will not be able to thoroughly describe reality. For this reason,

the model is not able to properly predict the behaviour of every single turbine. However, because the

errors produced by the model partly compensate one another, this second model manages to predict

the energy output of the wind farm with a better accuracy.
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Table 5.3: Standard deviation of the data used to create the deficits for speeds between 5m/s and 5.5m/s
0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦ 180◦ 190◦ 200◦ 210◦ 220◦ 230◦ 240◦ 250◦ 260◦ 270◦ 280◦ 290◦ 300◦ 310◦ 320◦ 330◦ 340◦ 350◦

T1 0.704 1.017 1.164 1.435 0.998 1.122 1.411 1.185 1.130 1.314 1.143 1.340 1.043 0.848 0.856 1.038 0.878 1.094 1.278 1.189 1.030 1.297 0.997 0.999 0.853 0.912 0.816 0.871 0.988 0.970 0.999 1.136 1.100 0.842 0.759 0.868
T2 0.662 0.839 0.972 1.546 1.067 1.164 1.305 1.212 1.145 1.268 1.019 1.302 1.169 1.072 1.065 1.150 0.994 1.061 1.204 1.243 1.017 1.181 1.063 1.006 0.754 0.883 0.892 0.903 0.977 0.812 0.968 0.947 0.887 0.867 0.900 1.004
T3 0.717 0.850 1.104 1.581 0.909 1.440 1.235 1.351 1.066 1.238 1.047 1.270 1.156 0.814 0.921 1.034 0.944 1.108 1.237 1.232 0.978 1.147 1.073 0.961 0.814 0.887 0.862 0.919 1.034 0.946 0.970 1.058 0.957 0.793 0.884 1.025
T4 0.745 0.883 0.836 1.435 1.104 1.453 1.267 1.367 1.076 1.221 1.095 1.171 0.874 0.915 1.001 1.124 0.857 1.086 1.218 1.215 1.137 1.060 1.032 0.904 0.759 0.852 0.859 0.786 0.801 0.642 0.909 1.124 0.842 0.926 0.851 0.839
T5 0.759 0.928 1.070 1.248 0.778 1.513 1.214 1.186 1.076 1.208 1.080 1.203 1.179 0.881 1.071 0.782 0.991 1.124 1.161 1.279 1.030 1.047 1.021 0.916 0.776 0.833 0.868 0.824 0.844 0.737 1.050 1.065 0.889 0.904 0.850 0.918
T6 0.723 0.859 1.002 1.250 0.905 1.592 1.469 1.281 1.124 1.211 1.176 1.329 1.132 0.943 1.044 1.115 0.968 1.038 1.169 1.232 1.043 1.029 1.022 0.920 0.823 0.827 0.835 0.763 0.785 0.552 0.819 0.974 0.749 0.725 0.732 0.827
T7 0.736 1.052 0.941 1.030 0.622 0.898 0.794 0.813 1.181 0.983 0.880 0.860 0.956 0.875 1.007 0.935 0.826 1.164 1.125 1.135 0.863 0.949 0.924 0.821 0.630 0.716 0.581 0.645 0.812 0.744 0.686 1.072 0.824 0.648 0.751 0.978
T8 0.643 0.799 0.745 1.064 0.984 0.828 0.811 0.894 1.161 1.144 1.002 0.911 0.906 1.056 1.040 0.972 0.925 1.084 1.132 1.106 0.868 0.912 0.864 0.759 0.658 0.743 0.593 0.651 0.734 0.697 0.596 1.035 0.774 0.597 0.642 0.870
T9 0.765 0.655 0.646 1.136 0.724 0.990 0.763 0.794 1.037 1.016 1.011 0.792 0.867 0.814 0.924 0.890 0.834 1.050 1.014 0.990 0.852 0.842 0.939 0.839 0.670 0.746 0.689 0.766 0.732 0.590 0.758 0.818 0.778 0.913 0.647 0.904
T10 0.805 0.613 0.885 0.951 0.681 0.862 0.911 0.780 1.043 0.991 1.008 0.906 0.848 0.788 0.920 0.885 0.849 1.025 1.039 1.060 0.903 0.894 0.897 0.805 0.737 0.768 0.808 0.780 0.830 0.752 0.740 0.827 0.961 0.751 0.616 0.868
T11 0.986 0.640 0.721 1.050 0.968 1.016 0.916 0.740 1.063 0.995 1.059 0.971 0.776 0.857 1.009 1.058 1.066 1.050 0.951 1.061 0.954 0.956 0.891 0.803 0.792 0.802 0.663 0.772 0.853 0.590 0.796 0.817 0.876 0.849 0.521 0.808
T12 0.584 0.469 0.218 0.933 0.812 0.923 0.893 0.794 1.117 0.960 1.039 0.986 0.799 0.865 1.049 1.039 0.971 1.026 0.944 1.041 0.908 0.887 0.930 0.712 0.746 0.907 0.622 0.920 0.891 0.538 0.789 0.800 0.789 0.854 0.505 0.724
T13 1.130 1.095 0.944 1.265 0.846 1.252 1.124 0.662 1.050 1.035 1.192 1.376 0.855 0.739 0.938 1.103 0.912 1.057 1.089 1.053 0.817 0.808 0.843 0.848 0.805 0.868 0.758 0.801 0.822 0.713 0.611 0.799 0.667 0.675 0.821 1.030
T14 0.469 0.411 0.669 0.837 0.746 0.848 0.837 0.695 0.620 1.002 0.875 0.867 0.910 0.755 0.782 0.866 0.653 0.854 0.889 0.817 0.790 0.730 0.914 0.645 0.775 0.749 0.685 0.841 0.690 0.655 0.719 0.764 0.804 0.818 0.857 0.702
T15 0.267 0.621 0.683 0.801 0.808 0.983 1.002 0.776 1.253 0.984 0.891 0.944 0.949 0.790 0.941 0.920 0.972 0.833 0.855 0.806 0.789 0.842 0.913 0.697 0.821 0.692 0.866 0.927 0.573 0.518 0.714 0.540 0.504 0.567 0.506 0.838
T16 0.566 0.583 1.079 0.513 1.071 0.672 1.046 0.942 0.945 1.210 1.064 1.173 1.083 0.870 0.817 0.769 0.820 0.866 0.925 0.874 0.902 0.829 0.913 0.734 0.660 0.909 0.774 0.753 0.668 0.643 0.570 0.839 0.804 0.883 0.682 0.428
T17 1.028 1.213 1.030 0.558 1.131 0.727 1.258 1.196 1.240 1.255 1.156 1.261 1.071 0.873 0.833 1.010 0.815 0.842 1.041 1.070 0.836 0.725 0.726 0.606 0.588 0.679 0.471 0.557 0.598 0.625 0.530 0.967 0.881 0.972 0.907 0.564
T18 1.192 1.219 0.953 0.703 1.094 0.867 1.108 1.053 0.973 1.359 1.192 1.105 1.042 0.887 1.018 1.083 0.822 0.909 0.869 0.735 0.824 0.729 0.747 0.543 0.615 0.624 0.425 0.532 0.535 0.586 0.614 0.987 0.873 1.054 0.911 0.940
T19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T20 0.763 0.803 1.021 0.770 0.571 0.955 0.982 1.084 0.878 1.175 1.162 1.224 0.957 0.787 0.864 0.885 0.752 0.824 0.991 0.804 0.728 0.711 0.790 0.612 0.635 0.859 0.542 0.858 0.994 1.102 1.102 0.832 0.871 1.033 0.712 0.603
T21 0.784 0.782 1.039 1.039 0.622 0.970 0.985 0.683 0.822 0.817 0.965 0.940 0.820 0.889 0.863 0.946 0.805 0.891 0.846 0.849 0.723 0.840 0.803 0.599 0.571 0.756 0.442 0.713 0.769 0.816 0.669 0.911 0.819 0.725 0.965 0.906
T22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T23 0.831 1.096 0.860 0.839 0.633 0.713 0.706 0.949 1.101 0.909 0.886 1.147 1.022 0.641 0.834 0.872 0.740 0.856 0.936 0.917 0.862 0.697 0.736 0.587 0.654 0.653 0.427 0.515 0.603 0.549 0.574 1.010 0.841 1.081 0.937 0.635
T24 0.747 0.775 1.050 0.578 0.491 0.861 0.914 0.681 0.762 0.845 0.897 0.877 0.818 0.627 0.786 0.738 0.797 0.934 0.931 0.801 0.723 0.755 0.685 0.598 0.610 0.679 0.425 0.482 0.522 0.631 0.630 0.987 0.956 0.974 0.894 0.721
T25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T26 0.940 0.882 0.912 0.742 0.590 0.692 1.090 0.860 0.985 0.804 0.879 0.946 1.099 0.838 1.077 0.838 0.825 0.930 1.186 1.085 0.977 0.810 0.791 0.737 0.716 0.659 0.542 0.644 0.764 0.636 0.619 0.932 0.793 0.858 0.976 0.688
T27 0.970 0.652 1.045 1.047 0.589 0.586 1.024 0.913 0.985 1.005 0.767 0.851 0.943 0.632 0.984 0.872 0.871 0.995 0.977 0.905 0.905 0.730 0.732 0.712 0.679 0.685 0.485 0.605 0.711 0.562 0.588 0.886 0.821 0.875 0.826 0.664
T28 0.954 0.780 0.891 0.721 0.781 0.521 1.181 0.953 0.954 0.982 0.922 0.944 0.882 0.783 1.016 0.845 0.939 1.102 1.210 0.958 0.908 0.759 0.830 0.657 0.669 0.736 0.545 0.572 0.680 0.594 0.643 0.799 0.814 0.821 0.898 0.725
T29 1.126 0.841 0.997 0.887 0.585 0.625 0.850 0.866 0.933 1.089 0.994 0.862 0.949 0.838 0.813 0.899 1.008 1.100 1.217 0.880 0.848 0.802 0.762 0.691 0.696 0.729 0.541 0.504 0.653 0.565 0.649 0.890 0.776 0.949 0.828 0.808
T30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T31 1.069 1.072 1.205 0.833 0.787 0.801 0.912 0.959 1.163 1.145 0.917 0.915 0.865 0.847 0.824 0.909 0.918 1.005 1.054 1.051 1.011 0.889 0.856 0.702 0.706 0.748 0.531 0.552 0.762 0.616 0.684 0.982 1.047 0.929 0.673 0.921
T32 1.007 1.027 1.092 0.726 0.348 0.839 1.007 0.956 0.899 1.141 1.054 1.040 1.072 0.789 0.920 0.864 0.984 1.232 1.109 1.065 1.130 0.980 1.000 0.727 0.726 0.742 0.686 0.774 0.823 0.588 0.669 0.952 1.000 1.151 0.869 0.941
T33 0.996 1.002 1.056 0.738 0.562 0.758 0.960 1.080 0.981 0.993 0.906 1.235 1.126 0.909 0.937 0.931 0.973 1.191 1.160 1.090 1.193 0.972 1.019 0.823 0.749 0.749 0.752 0.778 0.755 0.656 0.789 0.937 1.110 1.065 0.773 0.865
T34 0.886 1.092 1.246 1.032 0.638 0.931 1.065 1.084 0.884 0.896 0.870 1.174 1.103 0.956 0.825 1.024 1.029 1.012 1.249 1.037 1.134 1.019 1.036 1.017 0.904 0.840 0.930 0.764 0.857 0.671 0.839 1.055 1.131 0.949 0.799 0.793
T35 0.909 1.103 1.026 1.179 0.689 0.676 1.383 0.876 0.867 0.882 0.722 0.810 0.990 0.923 0.935 0.907 0.945 0.994 1.190 0.786 1.030 0.901 0.930 0.928 0.750 0.688 0.754 0.613 0.866 0.663 0.702 1.007 1.170 0.996 0.679 0.585
T36 0.867 1.196 1.153 1.012 0.495 0.607 1.050 1.490 0.664 1.113 0.759 0.945 1.149 0.929 0.801 0.865 0.982 1.111 1.195 1.092 1.094 0.854 0.770 0.908 0.779 0.678 0.694 0.527 0.790 0.679 0.794 0.959 1.188 1.098 0.759 0.785
T37 1.013 1.212 1.108 0.789 0.833 0.701 1.011 0.886 1.071 1.281 1.098 1.085 1.141 1.043 0.918 0.988 1.085 1.240 1.381 1.020 1.134 0.846 0.848 0.957 0.923 0.683 0.756 0.688 0.723 0.709 0.839 1.017 1.172 1.098 0.865 0.752
T38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T39 0.829 0.884 1.250 0.982 0.743 0.672 1.167 0.670 0.586 1.322 0.974 0.793 0.960 0.911 0.811 0.712 0.767 1.085 1.143 0.968 1.131 0.915 0.949 0.914 0.908 0.811 0.871 0.838 0.960 0.842 0.948 0.894 1.011 0.818 0.813 0.850
T40 0.518 0.939 0.944 1.201 0.792 0.878 1.215 0.708 0.528 1.100 0.570 0.691 0.907 0.721 0.642 0.810 0.762 0.816 0.992 0.692 0.926 0.855 0.764 0.713 0.784 0.736 0.770 0.667 0.943 0.799 0.767 0.839 0.919 0.724 0.725 0.789
T41 0.577 0.990 0.715 1.370 0.789 1.049 1.212 0.815 0.722 1.012 0.730 0.669 0.937 0.641 0.786 1.044 0.738 0.939 1.084 0.919 0.946 0.784 0.855 0.732 0.724 0.729 0.715 0.621 0.849 0.609 0.851 0.900 0.850 0.640 0.713 0.951
T42 0.590 0.942 0.730 1.148 0.817 0.923 1.016 1.070 0.814 1.094 0.713 0.675 0.937 0.627 0.798 0.793 0.846 0.918 1.016 0.796 0.895 0.890 0.905 0.774 0.801 0.743 0.665 0.954 0.793 0.671 0.800 0.727 0.770 0.827 0.548 0.944
T43 0.543 0.960 0.857 1.278 0.601 0.939 1.090 0.946 0.880 1.343 0.957 0.820 1.093 0.824 0.848 0.827 0.875 0.920 0.943 0.854 0.894 0.790 0.882 0.898 0.752 0.733 0.538 0.642 0.878 0.801 0.670 0.711 0.735 0.725 0.734 0.963
T44 0.980 0.949 1.053 1.084 0.569 0.852 0.859 1.088 0.828 1.007 0.917 0.856 0.964 0.868 0.826 0.850 0.805 0.720 0.856 0.876 0.933 0.873 0.884 0.892 0.708 0.794 0.550 0.698 0.942 0.649 0.672 0.952 0.789 0.948 0.730 0.717
T45 0.985 0.921 1.832 1.845 0.512 0.716 0.764 1.033 0.971 1.159 0.757 0.752 0.942 0.705 0.664 0.816 0.840 0.729 0.804 0.858 0.798 0.862 0.884 0.847 0.731 0.780 0.631 0.639 0.742 0.628 0.618 0.843 0.745 0.754 0.719 0.786
T46 0.806 0.623 0.634 0.731 0.514 1.158 0.833 0.913 0.983 1.089 0.710 0.742 0.895 0.706 0.686 0.788 0.883 0.907 0.797 0.735 0.872 0.837 0.757 0.716 0.701 0.758 0.627 0.744 0.717 0.554 0.641 0.766 0.779 0.817 0.764 0.856
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Table 5.4: Standard deviation of the data used to create the deficits for speeds between 5.5m/s and 6m/s
0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦ 180◦ 190◦ 200◦ 210◦ 220◦ 230◦ 240◦ 250◦ 260◦ 270◦ 280◦ 290◦ 300◦ 310◦ 320◦ 330◦ 340◦ 350◦

T1 0.504 1.053 1.086 1.418 0.724 0.563 1.227 1.445 1.289 1.596 1.624 1.178 1.161 0.931 0.897 1.011 1.066 0.877 1.321 1.306 1.291 1.233 1.019 1.093 0.983 0.779 0.793 0.852 0.826 0.924 0.930 1.123 1.255 0.769 0.851 0.721
T2 0.915 0.999 0.929 1.125 0.886 0.977 1.048 1.262 1.294 1.405 1.641 1.333 1.333 1.146 1.218 1.106 1.135 0.962 1.230 1.342 1.236 1.187 1.029 1.046 1.034 0.774 0.781 0.917 0.770 0.909 0.886 1.051 1.057 0.920 0.716 0.794
T3 0.528 1.035 1.026 1.380 1.306 1.261 1.025 1.380 1.200 1.199 1.352 1.094 1.212 1.028 1.142 1.192 1.187 0.938 1.085 1.330 1.219 1.144 1.091 1.077 0.940 0.858 0.838 0.967 0.914 0.936 0.939 1.057 1.056 0.948 0.795 0.980
T4 0.649 1.067 0.990 1.491 1.286 1.117 0.969 1.346 0.982 1.182 1.294 1.136 1.144 0.978 1.093 1.082 1.108 0.985 0.983 1.251 1.182 1.097 0.955 0.964 0.967 0.818 0.877 0.933 0.776 0.833 0.740 1.243 0.830 0.880 0.987 0.825
T5 0.421 1.148 1.014 1.363 1.483 1.339 1.179 1.426 1.091 1.092 1.279 1.028 1.263 0.954 1.228 1.015 1.274 1.001 0.964 1.238 1.184 1.142 0.972 1.008 0.924 0.842 0.815 0.857 0.819 0.910 0.922 1.111 1.067 0.918 0.630 0.847
T6 0.432 1.268 0.954 0.885 1.586 1.358 1.368 1.390 1.119 1.293 1.371 1.160 1.361 0.922 1.066 1.237 1.130 0.946 1.020 1.149 1.139 1.050 0.926 1.013 0.945 0.823 0.719 0.809 0.755 0.820 0.700 1.025 0.889 0.710 0.647 0.783
T7 0.591 1.048 0.726 1.287 0.849 0.843 0.939 1.154 0.875 0.939 1.126 0.872 1.019 0.858 0.886 1.160 0.988 0.980 0.952 1.234 1.100 1.097 0.872 1.055 0.765 0.790 0.635 0.690 0.718 0.963 0.808 1.144 0.941 0.659 0.669 0.968
T8 0.578 0.698 0.779 1.310 1.163 0.762 0.998 1.173 0.813 0.904 1.149 1.017 0.986 1.026 0.946 1.111 0.931 0.846 1.029 1.065 1.134 1.123 0.722 0.936 0.739 0.789 0.628 0.652 0.696 0.830 0.598 1.138 0.905 0.678 0.652 0.832
T9 0.649 0.844 0.807 1.151 1.592 1.006 0.936 0.986 0.888 0.909 1.030 0.909 0.931 0.874 0.844 1.121 0.924 0.875 0.954 1.033 0.993 0.975 0.749 0.982 0.803 0.799 0.644 0.832 0.564 0.596 0.688 0.968 0.785 0.760 0.643 0.755
T10 0.669 0.977 1.165 1.383 1.563 1.150 0.965 1.163 0.884 0.933 1.212 1.040 1.186 0.904 1.086 1.027 1.039 0.801 0.897 1.160 1.016 1.000 0.887 0.963 0.817 0.837 0.701 0.846 0.788 0.794 0.673 0.765 1.063 0.740 0.675 0.826
T11 0.688 0.986 1.214 1.571 1.638 1.652 1.057 1.256 0.813 1.040 1.197 1.165 1.054 0.885 1.002 1.022 1.062 0.781 1.055 1.206 1.095 1.072 0.843 0.962 0.769 0.710 0.614 0.893 0.824 0.751 0.726 0.864 0.866 0.760 0.685 0.749
T12 0.642 0.848 1.113 1.310 1.138 1.139 0.795 1.135 0.640 1.021 1.130 1.013 1.111 0.778 1.134 1.027 0.951 0.939 0.907 1.172 0.959 0.996 0.743 0.894 0.712 0.635 0.688 0.940 0.639 0.710 0.700 0.894 0.758 0.671 0.619 0.481
T13 1.527 1.247 0.958 1.357 1.262 1.287 1.252 1.194 0.721 0.996 1.150 1.078 1.041 0.856 0.960 1.091 0.943 0.902 1.094 1.076 1.112 0.955 0.804 0.845 0.833 0.820 0.734 0.751 0.622 0.609 0.624 0.793 0.750 0.534 0.744 0.803
T14 0.448 0.559 0.757 0.692 1.276 0.541 0.848 0.963 0.598 1.039 1.152 0.871 1.041 0.843 0.781 0.833 0.854 0.702 0.955 1.058 0.947 0.767 0.804 0.811 0.739 0.737 0.633 0.702 0.597 0.778 0.649 0.776 0.979 1.043 0.807 0.663
T15 0.906 0.424 0.779 1.203 0.300 0.522 0.719 1.012 0.857 0.858 1.265 0.843 0.993 0.994 0.853 0.890 0.929 0.783 0.864 0.954 0.942 0.820 0.772 1.067 0.598 0.823 0.848 0.707 0.450 0.682 0.799 0.905 0.809 0.615 0.660 1.139
T16 0.404 0.549 0.741 1.776 1.097 0.615 1.077 0.953 0.875 1.125 1.447 1.061 1.135 1.032 0.734 0.865 0.790 0.884 1.124 1.014 0.994 0.768 0.926 0.962 0.685 0.783 0.641 0.582 0.701 0.695 0.645 0.873 0.978 0.662 0.656 0.549
T17 0.646 0.602 1.185 1.126 0.915 0.737 1.236 0.876 0.938 1.243 1.558 1.351 1.067 0.906 0.698 0.817 0.662 0.901 1.162 1.108 0.742 0.672 0.780 0.707 0.655 0.543 0.420 0.482 0.666 0.655 0.624 1.023 1.175 0.965 1.008 0.609
T18 1.062 0.837 1.078 1.195 1.083 0.741 0.729 0.894 0.973 1.288 1.494 1.113 1.048 0.702 0.786 0.646 0.562 0.854 0.918 0.917 0.692 0.688 0.772 0.678 0.657 0.543 0.450 0.460 0.570 0.658 0.685 0.905 1.121 0.842 1.050 0.756
T19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T20 0.690 0.772 0.743 0.899 1.130 0.570 0.679 1.105 0.849 1.256 1.307 0.906 0.984 1.006 0.896 0.946 0.921 0.659 0.928 0.876 0.804 0.580 0.740 0.763 0.648 0.699 0.589 0.718 1.072 1.064 0.941 0.834 0.932 0.879 0.732 0.652
T21 0.674 0.798 1.129 1.024 1.137 0.384 0.639 0.928 0.737 0.883 0.956 0.841 0.978 0.837 0.754 0.846 0.802 0.788 0.849 0.912 0.925 0.652 0.700 0.904 0.587 0.610 0.465 0.607 0.717 0.876 0.651 0.912 0.841 0.652 0.876 0.752
T22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T23 0.825 1.097 1.027 0.200 0.830 0.844 0.767 0.815 0.862 1.103 1.172 1.064 1.076 0.922 0.647 0.784 0.694 0.977 0.909 1.057 0.727 0.666 0.768 0.566 0.643 0.538 0.451 0.449 0.544 0.632 0.605 0.725 1.088 0.702 0.848 0.807
T24 0.833 0.929 0.895 0.632 0.925 0.662 0.664 0.657 0.848 0.916 1.031 0.912 1.033 0.904 0.672 0.694 0.639 0.989 1.032 0.995 0.828 0.645 0.587 0.590 0.649 0.539 0.494 0.519 0.487 0.595 0.563 0.782 1.083 0.674 1.050 0.806
T25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T26 0.788 0.756 0.990 0.660 0.839 1.102 0.925 1.130 0.669 1.141 1.004 1.025 1.278 1.126 0.973 0.870 0.819 1.160 1.339 1.206 1.031 0.837 0.642 0.839 0.657 0.540 0.565 0.626 0.538 0.524 0.644 0.820 0.937 0.681 1.079 0.750
T27 0.850 1.003 1.042 0.895 1.619 0.611 1.113 0.796 0.498 0.985 0.909 1.012 1.179 1.024 0.736 0.839 0.852 1.010 1.212 1.143 0.973 0.680 0.648 0.794 0.653 0.568 0.539 0.596 0.483 0.494 0.556 0.867 0.989 0.825 0.898 0.564
T28 0.834 1.009 0.974 0.987 1.933 0.638 1.216 0.735 0.505 0.960 0.911 0.956 1.116 1.125 0.815 0.901 0.893 1.232 1.247 1.160 1.001 0.685 0.623 0.764 0.651 0.601 0.525 0.545 0.483 0.531 0.568 0.781 0.908 0.686 0.952 0.721
T29 1.036 0.893 0.876 1.146 1.763 0.595 1.082 0.761 0.690 1.096 1.027 0.984 1.136 0.865 0.765 0.857 0.888 1.283 1.309 1.015 0.974 0.727 0.679 0.834 0.669 0.624 0.465 0.540 0.488 0.688 0.609 0.813 0.877 0.867 0.896 0.992
T30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T31 0.950 1.162 0.988 0.836 1.287 0.595 0.750 0.819 0.810 0.989 1.033 0.803 1.094 1.150 0.747 0.872 0.758 1.174 1.227 1.068 0.983 0.911 0.727 0.796 0.692 0.627 0.569 0.651 0.627 0.570 0.653 0.847 0.992 1.010 0.725 1.012
T32 1.024 0.929 1.047 0.825 1.204 0.574 1.029 0.837 0.683 1.097 1.250 1.229 1.415 1.225 0.871 0.815 0.849 1.299 1.164 1.021 1.045 1.050 0.756 0.899 0.697 0.678 0.635 0.731 0.711 0.534 0.721 0.944 0.955 0.880 1.067 0.821
T33 0.923 0.985 0.993 0.420 0.970 0.567 0.986 0.878 0.758 1.128 1.188 1.206 1.280 1.241 1.006 0.811 0.915 1.299 1.023 1.099 1.093 1.092 0.704 0.938 0.720 0.632 0.637 0.643 0.756 0.517 0.698 0.911 0.815 1.064 0.838 0.923
T34 0.935 1.073 1.320 1.025 1.215 0.614 1.385 0.968 0.712 1.005 1.133 1.120 1.234 1.282 0.953 1.059 0.895 1.139 1.146 1.152 1.137 1.151 0.734 1.045 0.787 0.753 0.696 0.768 0.682 0.606 0.715 0.889 0.993 1.020 0.787 0.975
T35 0.866 0.911 1.122 0.866 1.176 0.497 1.051 0.859 0.749 1.056 1.000 0.812 1.193 1.098 0.826 0.957 0.917 1.256 1.230 0.942 0.974 0.955 0.776 0.939 0.777 0.641 0.635 0.684 0.778 0.651 0.646 0.911 1.064 0.947 0.979 0.721
T36 1.005 0.832 0.613 0.874 1.046 0.481 1.691 1.272 0.465 0.823 1.120 0.974 1.207 1.066 0.671 1.035 1.053 1.124 1.188 1.169 0.985 1.088 0.827 0.961 0.769 0.689 0.892 0.643 0.674 0.531 0.604 0.903 1.134 1.095 0.849 0.795
T37 1.139 0.862 0.954 0.614 1.078 0.416 1.078 0.864 0.675 1.043 1.173 1.015 0.926 1.015 0.663 1.239 1.088 1.345 1.510 1.307 1.016 1.132 0.983 0.966 0.738 0.762 0.618 0.678 0.604 0.538 0.562 1.004 1.119 1.029 0.919 0.666
T38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T39 0.997 1.005 1.033 0.689 1.006 0.392 1.085 0.497 0.285 0.839 0.773 0.667 0.928 0.993 0.613 0.792 0.493 0.686 1.284 1.155 1.033 1.037 0.836 0.915 0.943 0.888 0.911 0.825 0.999 0.841 0.767 0.789 1.050 0.780 0.956 0.960
T40 0.850 0.978 1.053 0.853 1.161 0.741 0.922 0.734 0.271 0.752 0.636 0.548 1.025 1.018 0.641 0.817 0.836 0.902 1.061 0.937 0.768 0.972 0.782 0.850 0.818 0.910 0.795 0.728 1.020 0.715 0.593 0.752 0.898 0.903 0.894 0.876
T41 0.848 1.088 0.992 1.081 1.284 0.766 0.934 0.809 0.493 0.911 0.872 0.661 1.051 1.073 0.863 0.913 0.975 0.896 1.007 1.055 0.988 0.869 0.762 0.797 0.722 0.841 0.651 0.777 0.816 0.551 0.584 0.799 0.843 0.608 0.774 0.898
T42 0.672 1.069 1.036 1.036 1.486 0.826 1.000 0.887 0.485 0.892 0.944 0.775 1.078 1.126 0.853 1.045 0.933 0.952 0.919 0.829 0.926 0.961 0.678 0.876 0.883 0.826 0.609 1.048 0.973 0.780 0.726 0.765 0.775 0.680 0.834 0.826
T43 0.660 0.986 1.031 1.180 1.210 0.693 0.874 1.039 0.825 0.780 0.947 0.802 1.245 1.098 0.876 0.950 0.987 0.775 0.655 0.866 0.909 0.966 0.631 0.926 0.776 0.844 0.597 0.666 0.682 0.904 0.638 0.749 0.796 0.794 0.967 0.896
T44 0.836 1.033 1.257 1.349 1.458 0.624 1.029 0.822 0.651 0.936 1.065 1.018 0.984 1.016 0.853 1.001 0.952 0.685 0.756 1.026 0.972 0.933 0.690 1.076 0.702 0.731 0.561 0.692 0.697 0.823 0.617 0.877 0.780 0.842 0.860 0.843
T45 0.733 1.223 1.201 1.094 1.293 0.587 1.006 0.802 0.544 1.043 0.940 0.970 1.028 1.049 0.826 0.922 0.904 0.947 1.020 1.043 0.857 0.925 0.690 0.995 0.740 0.833 0.606 0.777 0.739 0.635 0.535 0.738 0.769 0.806 0.797 0.942
T46 0.733 0.902 1.076 1.251 1.319 0.463 0.902 0.852 0.574 1.053 0.867 0.876 1.134 1.090 0.908 0.881 0.836 0.881 0.891 0.764 0.908 0.847 0.740 0.909 0.710 0.643 0.613 0.775 0.727 0.646 0.653 0.767 0.742 0.724 0.895 0.867
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5.10 Attempt to Improve the Model

Since in some cases the model was not able to reproduce the actual behaviour within the wind farm and

of the wind farm itself, some attempts to improve the model were carried out. Initially, the difference in

energy production was studied in terms of the wind direction. By doing so, it was hoped that some kind

of pattern would be found. Mainly, the goal was to find one or more directions in which the difference

between the results of the model and the measurements was constanly higher than in the others. If the

goal was fulfilled some improvements in case the wind was blowing from that direction could be made.

The results of this first attempt are reported in Figure 5.9, where the difference in energy production is

plotted as a function of the wind direction.

Figure 5.9: Difference in energy production as a function of the wind direction

It can be noted how the circles are scattered around the whole graph, with a peak a bit after 200◦ .

However, this peak does not highlight a useful pattern since it happens because that one is the direction

the wind blows from most often from. In addition to this, in the same direction there are cases in which

the difference is extremely low and even equal to 0. Also, some cases in which the difference is as high

as or even higher than the levels reached in that direction can be found for other values on the x-axis.

For these reasons, no useful input to improve the model were obtained from this analysis.

In another attempt to improve the model, the possible dependence of the difference in energy pro-

duction on the temperature was studied. In order to carry out a correct analysis, the meteorological

data collected by each turbine was studied to check their reliability. It was found that not all the turbines

produced reliable data. In fact, a turbine was found to collect data that were significantly different from

the ones nearby, which is not possible since the variable taken into account was the temperature. For

this reason, this turbine was neglected when studying the metorological conditions. Once again, the

difference in energy production was plotted in a cartesian coordinate system, where it was indicated

on the y-axis while the temperature was on the x-axis. The temperature indicated on the x-axis is the

average of the temperature data collected by the turbines. Such a plot is reported in Figure 5.10. Just

like in the previous case, no pattern was recognised looking at the plot. Again, the majority of the data is
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Figure 5.10: Difference in energy production as a function of the ambient temperature

located in an interval of the x-axis making impossible to find a possible relation between the two sets of

data. Also, just like in Figure 5.9, the circles are scattered all around the graph highlighting even more

the fact that no relation is present.

A further analysis on the difference in energy production was carried out when it was compared with

either the average or maximum (and according to the model, undisturbed) wind speed. Once again, no

clear relation could be identified, even after dividing the data also according to the direction the wind

was blowing from.

In order to search for an improvement, the accumulated difference of the wind speed at the turbines

was studied. The accumulated difference is calculated like in equation (3.7). The accumulated difference

was then plotted as a function of the wind direction. It was hoped that this new analysis could produce

different results as in the accumulated difference the errors do not erase one another like in the difference

in energy production. However, as shown in Figure 5.11, also in this case no important pattern was

Figure 5.11: Accumulated wind speed difference as a function of the wind direction
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found. The results are similar to the ones in Figure 5.9, but it can be easily noted in this case that there

are a few points with an extremely high accumulated difference. These points can help in understanding

to what extent the fact that the errors erase one another can affect the results of a model.

Sequently, a possible and easily-implementable correlation between the wind speed and the other

meteorological variables was seeked. It was thought that one variable would not be enough to describe

the wind speed and therefore in this new analysis 3D plots were used. This way, the wind speed was

studied as a function of two meteorological variables and not only one. Since the variables that were

thought to possibly affect the wind speed were 3, a series of 3D plots was created. The meteorological

variables taken into account were pressure (p), temperature (T ) and humidity (φ). In this series of graphs,

the wind speed was always put on the z-axis, while the variables on the x-axis and y-axis varied. The

plots obtained were three:

1. Temperature vs Pressure vs Wind speed

2. Temperature vs Humidity vs Wind speed

3. Pressure vs Humidity vs Wind speed

The graphs obtained are shown in Figure 5.12. They are reported in a smaller format as the im-

ages are not able to properly report the information contained in the plots. In this case, the data used

came from the met masts within the wind farm since the instrumentation on the turbines was not able to

measure the humidity and also because the measurement from the met masts should be more reliable.

Also this analysis did not lead to results as the points were scattered all over the graph, with no identi-

fiable behaviour. To conclude, all the analysis explained in the last section did not lead to any possible

improvement to the model, which therefore remained unchanged.

(a) T vs p vs u (b) T vs φ vs u

(c) p vs φ vs u

Figure 5.12: Series of 3D graphs involving the meteorological variables
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5.11 Possible Ameliorations

In order to have the model to predict in a better way the output of the wind farm a few possible ame-

liorations should be done. However, some of these improvements are not directly related to the model

itself. One of the problems encountered was the lack of data relative to some conditions of the wind.

This happened because the data used for the training of the model was just relative to 9 months. When

characterising a site based on its wind, data is collected for a long period of time, even several years.

This way it is possible to find at least an average condition for every season of the year without it being

affected by the variable conditions that may happen uniquely in a year. Having more data would have

allowed to better characterise some of the conditions of the wind, which instead were strongly influenced

by some data with a very high standard deviation. Also, it would have permitted to find data relative to

some conditions that never occurred during those 9 months.

However, this improvement alone would have not been enough to significantly improve the model.

In fact, the most important amelioration would probably be to include the variability of the wind within

the model. With this additional feature, the model would probably be better at reproducing some of the

fluctuations of the speed happening within the wind farm.

Alternatively, if the interval covered by each time slot were shorter, the variability of the wind would

affect to a lesser way the results of the model. In case of shorter intervals, the fluctuations would still be

present but their effect would be diminished. In addition to this, since the power produced by a turbine is

proportional to u3, decreasing the influence of the fluctuations on the wind speed would translate in an

even bigger reduction of their impact on the energy produced.

5.12 Conclusions to the Chapter

In this chapter, the structure of the empirical model has been exposed. Initially, the reasons why the

power curves and the list of unreliable turbines were maintained from the physical model were explained.

Then, it was explained how the maximum wind speed and the average wind direction were decided to

be the inputs to the model. Subsequently, the organisation of the data and the solution for the unreliable

turbines were uncovered.

In the next sections, the results obtained from the application of this second model were revealed,

showing better results compared to the physical model. However, the results were not extremely precise

and therefore the standard deviations of the wind speeds used to create the deficits were analysed. Fi-

nally, some possible improvements were studied or suggested. Among the ones that have been studied,

no real applicable amelioration was found and consequently, the model was kept as it was.
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Chapter 6

Creation of the Series of Equations

The last step towards the conclusion of the project was the creation of a series of equations representing

the behaviour of the deficits collected using the empirical model. This last operation would allow the

team of the wind farm to quickly know the output of each working turbine once the conditions of the wind

entering the wind farm were known. This way, they would be able to quickly communicate the amount of

power the wind farm is able to send to the grid. Also, this method would allow not to take into account

the turbines that have been shut down because of different reasons.

Figure 6.1: Example of set of data obtained from the deficits of the empirical model

In Figure 6.1, an example of the set of data that was attempted to reproduce in order to describe the

behaviour of that particular turbine is shown. Even though it is a 3D graph, Figure 6.1 shows in a clear

way how the the power output significantly varies according to the direction.

6.1 Software Used

Having the deficits for the vast majority of combinations of wind speed and direction, it was possible to

estimate the power output of each turbine according to those particular conditions. After these calcula-

63



tions, the outputs and relative inputs were saved and organised based on the turbine they were referred

to. Once the data was organised, all the inputs and outputs needed were available and easy to connect

among them. In these cases, the most suitable approach to find an equation able to reproduce the

behaviour represented by the inputs and outputs is the surface fitting.

Two methods have been selected as possible when applying the surface fitting. The first one is

based on the calculation of the best possible set of parametres relative to a type of equation given by

the user. In order for this procedure to work properly, the user needs to have an idea on the type of

equation governing the analysed phenomenon. This approach was studied with the help of Prof. Pedro

Sebastião using his online platform Fitteia [43]. The second method needs specific software, which is

able to find the most suitable type of equation among the ones included in their sets and find a set of

parametres describing that equations that is able to maximise R2. In this case, the software used to try

to create this set of equations were TableCurve 3D [44] and CurveExpert [45].

Since the second approach is easier for the user, it was initially chosen to find the equations describ-

ing the behaviour of the turbines. Also, the calculations were originally carried out only for one turbine,

while the other calculations would have been done if satisfactory results were found with any of the

software or approaches.

6.2 First Attempts

As it has just been stated, in the first attempts to find an equation emulating the production of power

from the wind turbines the software using their own sets of equations were used. In this case, results

with an extremely good value of R2 were found. However, they were not able to properly reproduce

the behaviour of the turbine because the obtained surface was almost constant with the direction and

therefore not able to reproduce the oscillations of the data. This feature can be seen comparing Figure

6.2 and Figure 6.1.

The results reported in Figure 6.2 have been taken from the software TableCurve 3D and follow the

equation reported in (6.1). Despite this problem with the direction, this curve has been indicated to reach

a value for R2 equal to 0.99999907. Similar results have been found also using CurveExpert, but they

presented the same kind of problems, especially being almost constant with the wind direction.

z = a+ 0.25 · b ·
(

1 + erf
( x− c√

2 · d

))
·
(

1 + erf
( y − e√

2 · d

))
(6.1)

where:

• x is the wind speed in m/s

• y is the wind direction in ◦

• z is the power output in kW

• a = 2.1850562
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• b = 2300.0094

• c = 8.7884548

• d = 2.1245277

• e = −2826.5238

• erf indicates the error function

Figure 6.2: Best fit relative to the power production of a single turbine

Since the main issue with the curve indicated by equation (6.1) is relative to the lack of fluctuations,

a series of equations involving trigonometric functions has been taken into account. In this case, the

best result comes from an equation involving the cosine and having 66 parameters and therefore too

long to report here. However, despite the complexity of the equations, it was not possible to obtain a

proper reproduction of Figure 6.1. With this new equation R2 = 0.9747244, which is even lower than the

previous case.

In Figure 6.3, the behaviour of the curve is shown. However, in spite of the fluctuations along the axis

of the direction, the function fails to reproduce the behaviour of the data as it can be seen in Figure 6.4,

where the difference between the data and the function is reported. In Figure 6.4, the points highlighted

in blue indicate when the data has a higher value than the function, while the red points mark the

opposite.

The main reasons why these functions involving the cosine and this function in particular fail to re-

produce the desired behaviour are probably two. The first one is relative to the period of the oscillations,
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Figure 6.3: Curve fitting obtained considering trigonometric functions

Figure 6.4: Residuals between the data and the equation involving the trigonometric functions

as the data has a highly irregular one, which is difficult to reproduce for an analytical function. The sec-

ond one is about the amplitude of these fluctuations, as there are almost none with the same amplitude
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among the data. This is a further issue which is extremely difficult to reproduce and therefore leads the

analytical function to not reach its goal.

Since the functions obtained using the software products CurveExpert and TableCurve 3D did not

reproduce the data, an additional attempt using the functions present in their sets was made. After

running the software and obtaining the best results relative to R2, two equations were selected. The

equations were chosen based on their complexity and value of R2. As a next step, these functions were

optimised using MATLAB in order to minimise the accumulated difference first and then to maximise R2.

The first equation considered is shown in (6.2):

z = a+ b · cos(x”) + c · sin(x”) + d · cos(y”) + e · sin(y”) + f · cos(2x”) + g · sin(2x”) + h · cos(2y”)+

i · sin(2y”) + j · cos(3x”) + k · sin(3x”) + l · cos(3y”) +m · sin(3y”) + n · cos(4x”) + o · sin(4x”)+

p · cos(4y”) + q · sin(4y”) + r · cos(5x”) + s · sin(5x”) + t · cos(5y”) + u · sin(5y”) + v · cos(6x”)+

aa · sin(6x”) + ab · cos(6y”) + ac · sin(6y”) + ad · cos(7x”) + ae · sin(7x”) + af · cos(7y”)+

ag · sin(7y”) + ah · cos(8x”) + ai · sin(8x”) + aj · cos(8y”) + ak · sin(8y”)

(6.2)

where z is the power output in kW and x” and y” are two variables indicating the wind speed in m/s

and the direction in ◦ , but varying between 0 and 2π. The function represented in (6.2) has been chosen

because of a relatively good initial value of R2 and limited amount of free parameters (33). In Figure 6.5,

the results of the optimisation in terms of the accumulated difference are shown together with the data

that the function should resemble.

Figure 6.5: Results of the optimisation relative to the accumulated difference of (6.2)

As shown in Figure 6.5, not even by minimising the accumulated difference it was possible to obtain

a satisfactory result. In fact, the analytical equation still fails to reproduce the data obtained from the

empirical model. Therefore, a second optimisation was run. This time with the objective of maximising
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the R2, in case the results from the software were not the best possible. The outcome of this second

optimisation is shown in Figure 6.6.

Figure 6.6: Results of the optimisation relative to the R2 of (6.2)

The two equations found through the optimisations actually are pretty similar, with slight differences

mainly in the amplitude of the fluctuations. Consequently, the results of the optimisation fail to reproduce

the data and therefore any function of the family indicated in (6.2) cannot be used to calculate the power

output of any of the turbines in the wind farm.

The second family of equations considered for the creation of the function reproducing the behaviour

of the wind turbines within the wind farm is shown in (6.3). Like for (6.2), equation (6.3) was shown to

have a good initial value as R2 and a relatively low amount of free parametres, 21.

z = a+ b · cos(x”) + c · cos(y”) + d · cos(2x”) + e · cos(x”) cos(y”) + f · cos(2y”) + g · cos(3x”)+

h · cos(2x”) cos(y”) + i · cos(x”) cos(2y”) + j · cos(3y”) + k · cos(4x”) + l · cos(3x”) cos(y”)+

m · cos(2x”) cos(2y”) + n · cos(x”) cos(3y”) + o · cos(4y”) + p · cos(5x”)+

q · cos(4x”) cos(y”) + r · cos(3x”) cos(2y”) + s · cos(2x”) cos(3y”) + t · cos(x”)

(6.3)

where every symbol has the same meaning as in (6.2).

As for equation (6.2), two different optimisations were run using the analytical function portrayed in

(6.3). Again, the first one attempts to minimise the accumulated difference, while the second one tries to

maximise R2. The results of the former are shown in Figure 6.7, where it can be seen that the optimised

function does not behave as desired. In this case, there seem to be issues not only with the oscillations

but also with the region in which the surface of the data flattens.

The outcome of the maximisation of R2 relative to equation (6.3) is shown in Figure 6.8. Also this

second optimisation fails to find a series of values for the parametres in order for the analytical equation

to resemble the data. The behaviour of this new curve is extremely similar to the one portrayed in Figure

6.7, with small discrepancies in the amplitude of the oscillations and a significant one in the first power
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curve, i.e. the one for the wind blowing from 0◦ . That probably happens because for a wind direction of

0◦ , y” is equal to 0rad, which could lead to some strange behaviours in the function.

Figure 6.7: Results of the optimisation relative to the accumulated difference of (6.3)

Figure 6.8: Results of the optimisation relative to the R2 of (6.3)

6.3 Second Approach

Given the lack of consistency in the results obtained using the software with their own sets of equations,

a new approach was used. In this second method, after finding a function resembling the power curve

for each direction, a pattern between each single parametre characterising the function and the wind

direction had to be found. In this second procedure, the online platform Fitteia [43] was used with the

additional help of Prof. Pedro Sebastião.

As a first step, a function that could resemble the behaviour of a power curve had to be found. The

best curve in this case seemed to be the Five Parameter Logistic (5PL) Fit. Two different versions of this
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curve were found online. The first one used was the one shown in equation (6.4) because it is the one

contained in the online platform.

f(x) = a+

(
d

1 +
(
x
c

)b
)e

(6.4)

As it can bee seen from (6.4) and realised from the name of the function, this equation is based on

5 free parametres. Equation (6.4) was fitted to resemble each single power curve, obtaining 5 different

parametres for each one. Afterwards, each parametre was plotted based on the direction (which means

all the parametres a in one plot, all the parametres b in another one and so on) to find a possible

function that having only the direction as input could return the specific value of the parametre for the

particular direction. If such a function could be found, it would be used to substitute the parametre in

the 5PL equation. Unfortunately, no pattern between the wind direction and the relative values of the

parametres was found. Consequently, some modifications were needed. The first path that was followed

was to decrease the number of free parametres, blocking the other ones. Studying the values of the 5

parametres found from the fittings, the ones that seemed more constant with the direction and to less

affect the curve when varied were identified and blocked. Eventually, a series of 36 curves (one for each

angular sector) depending on a single parametre was found. The parametre that was left as the free one

was c. However, it was not possible to find an equation able to reproduce the values of such a parametre

depending on the wind direction.

Sequently, a second version of the 5PL equation usable in MATLAB was found. Again, the function

was based on 5 parametres but in this case their ”meaning” was clearer and therefore it was possible

and easier to decrease their number. This second version of the 5PL Fit is shown in equation (6.5) [46]:

f(x) = d+
a− d(

1 +
(

x
c

)b)e , (6.5)

where:

• a is the minimum asymptote

• b is the Hill’s slope, i.e. the steepness of the curve

• c indicates the inflection point

• d stands for the maximum asymptote

• e is the asymmetry factor

In the case of e = 1, the curve becomes symmetrical and has 4 free parametres. As it was done

for the first version of the 5PL equation, some of the parametres were blocked and the others kept free.

In this case, the parametres that were blocked were only three: a, d and e. The parametre a was fixed

at a value of 125 because it was a good approximation of the power output at a wind speed of 3m/s

along the different directions. In case of a satisfactory final result, such a value could have been varied

or optimised in order to have a better fitting. The parametre d was blocked at 2300 as this is the rated
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power of the wind turbines in the wind farm. Finally, e was set equal to 1 in order to have a symmetrical

curve. This operation can be suggetsed by the fact that the difference between the 5PL and the 4

Parameter Logistic Fit is the presence of the parametre e. Eventually, the equation to fit to the power

curves was depending only on two parametres.

f(x) = 2300 +
125− 2300

1 +
(

x
c

)b (6.6)

Afterwards, the equation (6.6) was fitted to some of the 36 power curves and the relative values

of b and c were saved. The values of the parametre c were then plotted (direction vs parametre) and

another fit was seeked. If such a fit could have been found, the fitting of the power curves would have

been continued with the remaining angular sectors. Also, if this fit would have been found as well the

same calculations would have been carried out for the parametre b. The fit ”direction vs parametre” was

attempted with three different software products: Fitteia, CurveExpert and MATLAB. Given the behaviour

of 4 random values of the parametre c, in Fitteia it was attempted to reproduce its behaviour with the

function sin(x)
x . The results of this first attempt are shown in Figure 6.9.

Figure 6.9: Fitting of the parametre c depending on the wind direction with Fitteia

Since sin(x)
x failed to reproduce the behaviour and that a further use of Fitteia would have required the

user to decide which type of equation to use, the following attempts were made using first CurveExpert

and then MATLAB. The results from the fitting with the former software are shown in Figure 6.10. It can

be noted how in spite of the limited amount of points, the fit was not successful. Consequently, it was

deemed as unnecessary to continue the fit with this software.

As a last attempt, MATLAB was used in order to find a good fit. Initially, some good results were

obtained and therefore an increased number of points were used to find the fit. The results for fit

obtained using MATLAB are shown in Figure 6.11.
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Figure 6.10: Fitting of the parametre c depending on the wind direction with CurveExpert

Just like in the previous cases, the fitting depicted in Figure 6.11 fails to reproduce the values of the

parametre c having the wind direction as input. Therefore, after all these attempts using several different

approaches to the problem, it was thought that the objective of finding an analytical function giving the

power output of the turbine as a result using only undisturbed wind speed and direction as inputs cannot

be reached, at least using the tools available.

Figure 6.11: Fitting of the parametre c depending on the wind direction with MATLAB

6.4 Conclusions to the Chapter

In this chapter, it was attempted to create a set of equations that could reproduce the results of the

empirical model. If such a set had been created, it would have been possible to calculate the power

output of each turbine and of the wind farm using only the forecasted wind speed and direction. To
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try to create these equations, the technique of the surface fitting was used. Initially, specific software

was used, unsuccessfully though. Therefore, a second approach was used. In this case, a curve for

each direction was created and the realitve parametres characterising it saved. Subsequently, a pattern

between each parametre and the wind direction was seeked. In case this pattern had been found, it

would have substituted the parametre itself in the general equation. As in the previous case, satisfactory

results were not found even after decreasing the amount of parametres and therefore it was thought that

this task could not be fulfilled.
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Chapter 7

Empirical Power Model

Since in every step of a model usually the margin of error increases, it was thought that a new model

with the minimum amount of steps possible could be created. In this case, a similar approach to the

one used in the empirical model was adopted. In order to have the least amount of steps possible in the

creation of the model, the power output of the whole wind farm was studied and organised depending on

the conditions of the incoming wind. For these reasons, this model will be called empirical power model

from now on.

7.1 Organisation of the Data

The variables chosen to characterise the wind are the same as the ones used in the empirical model:

maximum wind speed and average wind direction. The reasons behind these choices are identical to the

ones exposed in Section 5.2. Also the criteria used to create the speed and direction bins were the same

as in the empirical model (velocity bins of 0.5m/s and direction bins of 10◦ ). The time slots considered for

the creation of this third model were only the ones in which all of the turbines were working. This decision

was taken in order to maintain the possible error as low as possible, even though the absence of a single

turbine would have averagely created an error of ≈ 2%. Unfortunately, this choice decreased even more

the amount of data to use for the creation, going from 9 to 6 months. For the creation of this last model,

the measurements from all the turbines have been considered reliable, as there was no possible way to

check their accuracy. Among the remaining data relative to the power output, only the ones reporting a

positive value were considered. All the ones relative to the same time slots were then summed in order

to find the power output of the whole wind farm during those 10 minutes. Afterwards, the wind velocity

and direction for that time gap were studied in order to know where to collect that particular piece of

data. After analysing all the possible time slots, the average power output was found and saved within

a matrix having the speed bins in different rows and the direction ones in the columns. Obviously, since

in the empirical model not all the possible wind conditions occurred, the same happened in this case

where the amount of time slots available was even lower. The matrix obtained through this organisation

of the data is shown in Table 7.1.
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Table 7.1: Matrix containing the average power output of the wind farm depending on the wind conditions
0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦ 180◦ 190◦ 200◦ 210◦ 220◦ 230◦ 240◦ 250◦ 260◦ 270◦ 280◦ 290◦ 300◦ 310◦ 320◦ 330◦ 340◦ 350◦

3.25m/s 0.3 0.6 0.2 0.1 0.2 0.4 0.3 0.1 0.3 0.2 0.2 0.3 0.7 0.4 0.3 0.4 0.4 0.3 0.3 0.2 0.3 0.3 0.2 0.3 0.3 0.3 0.2 0.4 0.4 0.3 0.3 0.3 0.4 0.3 0.4 0.2
3.75m/s 0.9 0.8 0.6 0.6 0.7 1.1 0.4 0.5 0.9 0.6 1.0 1.0 1.6 1.0 0.9 0.5 1.0 0.9 0.6 0.7 1.3 0.9 1.2 0.9 1.3 1.0 1.2 1.8 1.3 1.1 1.0 1.0 0.8 0.8 1.0 0.7
4.25m/s 1.4 1.4 1.7 1.2 1.1 1.4 1.8 0.8 1.5 1.5 2.3 3.3 1.8 2.3 2.0 1.8 2.0 1.8 1.5 1.5 2.1 2.2 2.5 2.8 3.0 2.7 2.6 4.5 3.3 3.3 2.9 2.6 2.2 2.3 1.7 1.7
4.75m/s 3.4 4.1 3.4 2.9 1.9 2.2 3.4 4.0 3.5 4.1 3.3 5.0 4.3 4.6 4.8 3.9 3.8 3.2 2.7 3.4 3.5 3.9 4.7 5.6 6.1 6.0 6.2 6.1 6.1 5.9 5.4 4.3 3.8 3.8 3.6 2.9
5.25m/s 5.9 5.3 4.1 5.1 4.3 5.6 5.3 5.9 5.2 6.3 6.5 6.8 6.1 7.1 6.9 6.0 6.0 5.5 4.8 5.1 6.1 6.8 8.0 8.5 9.0 8.9 7.8 8.1 7.7 8.3 7.9 6.9 7.8 7.1 5.6 5.3
5.75m/s 8.6 9.0 6.5 7.4 9.6 8.5 8.0 9.6 8.4 8.4 8.9 9.3 9.3 9.1 9.9 8.1 7.9 8.2 7.1 7.4 8.0 9.9 10.3 11.4 11.4 12.3 11.9 11.6 13.3 12.5 11.7 9.3 10.1 9.5 8.0 8.0
6.25m/s 11.3 10.9 12.0 11.3 9.6 13.5 13.1 11.1 11.4 11.1 14.0 10.6 12.0 10.4 12.6 12.3 10.2 10.3 8.3 10.5 12.2 12.5 14.5 17.3 16.4 15.5 14.9 15.4 14.5 17.1 14.6 13.7 13.3 14.1 11.4 11.9
6.75m/s 15.6 15.8 13.3 14.9 15.0 12.7 17.6 17.5 17.8 17.2 18.6 17.0 16.8 14.4 12.3 16.1 12.5 12.2 11.4 13.7 15.9 16.6 19.1 21.3 21.8 19.6 19.5 18.1 21.5 19.5 19.8 20.3 18.0 17.1 15.0 14.2
7.25m/s 20.5 19.6 17.5 25.5 21.1 18.6 17.4 20.8 19.7 21.3 23.6 20.2 19.8 21.3 20.6 18.6 16.2 15.2 16.3 16.1 22.3 22.5 24.3 26.0 25.0 25.8 27.6 24.3 23.2 26.3 26.1 26.3 23.4 21.4 19.1 18.3
7.75m/s 25.0 24.2 20.8 30.9 15.4 20.3 23.0 25.1 26.6 21.1 26.4 24.7 23.2 24.6 23.6 22.8 20.8 17.0 21.7 21.3 26.5 26.1 28.4 33.2 31.1 30.5 33.4 29.6 29.4 32.1 33.6 30.5 29.2 26.6 24.4 21.0
8.25m/s 29.7 29.1 34.3 29.0 9.3 25.7 26.5 28.7 30.6 30.3 34.3 34.2 31.1 27.1 23.5 28.3 23.1 21.5 23.0 29.1 29.4 33.0 34.2 40.0 31.8 36.1 34.8 35.7 32.9 38.5 42.1 38.7 32.9 33.7 27.2 28.3
8.75m/s 38.2 33.2 41.2 29.1 32.9 28.2 30.4 30.1 35.3 40.9 41.1 39.3 32.3 31.6 27.2 30.1 25.7 24.3 32.2 32.9 35.7 38.6 39.2 42.7 42.1 41.0 42.0 50.6 36.6 37.0 48.3 44.2 39.4 40.5 36.9 34.4
9.25m/s 40.1 49.0 37.0 23.6 29.8 28.0 39.2 35.6 41.7 44.3 47.0 46.4 39.7 42.2 47.1 42.1 39.9 33.7 35.4 40.2 41.4 45.8 48.0 52.3 51.3 44.0 54.4 50.5 46.3 55.9 61.4 56.0 48.5 47.0 43.3 42.3
9.75m/s 52.8 58.5 0 42.2 33.1 41.0 44.3 45.3 48.9 51.6 53.1 53.8 50.0 46.9 52.4 40.2 38.8 43.6 39.6 45.3 51.7 50.9 56.0 59.4 54.9 51.7 53.6 57.2 71.0 68.1 58.1 63.0 57.6 53.5 54.6 47.8
10.25m/s 63.2 68.3 60.5 46.1 34.1 39.8 43.3 49.4 56.1 62.8 65.9 62.7 55.5 51.4 60.6 51.8 46.4 45.7 45.4 53.0 56.5 58.9 64.5 69.5 62.6 61.9 68.1 59.4 67.7 58.9 65.6 71.4 64.2 64.4 64.2 52.3
10.75m/s 70.6 75.6 73.2 46.6 52.5 42.1 52.3 57.5 69.0 70.7 76.3 70.2 59.0 61.5 61.4 56.1 45.2 48.4 55.8 62.3 64.8 68.1 71.5 79.7 76.1 70.1 85.5 77.3 64.0 89.2 73.6 78.3 75.8 73.4 70.2 60.0
11.25m/s 78.7 81.2 92.7 44.1 52.2 49.9 61.2 67.8 80.4 74.9 80.8 78.1 69.9 71.1 60.4 59.3 45.0 56.2 68.1 70.4 71.1 75.2 81.8 88.4 80.3 0 81.8 79.1 0 81.8 82.2 84.1 86.8 83.9 82.8 72.0
11.75m/s 91.2 95.2 0 0 62.2 70.9 67.0 78.2 85.9 80.3 87.5 88.1 79.8 83.0 76.1 64.5 63.3 57.0 75.7 79.7 77.9 77.7 86.3 88.7 84.2 0 101.0 94.2 0 86.7 87.4 90.5 93.3 89.4 88.7 83.6
12.25m/s 91.5 0 0 0 0 51.2 65.6 93.4 87.6 90.4 95.8 92.7 85.0 88.6 79.5 62.5 65.7 70.0 81.8 84.0 82.7 87.6 88.2 105.5 99.7 78.4 81.3 0 0 71.5 98.0 92.2 98.6 93.7 93.1 85.6
12.75m/s 92.3 88.0 0 0 0 61.9 88.4 88.3 91.1 94.9 99.9 98.8 91.5 92.3 87.8 0 76.3 72.7 80.5 88.9 92.2 89.5 91.6 0 0 93.0 101.5 101.9 0 0 102.2 95.7 97.7 97.4 96.3 89.7
13.25m/s 100.0 0 0 0 0 0 89.4 88.8 95.7 96.1 102.0 100.7 97.5 94.9 90.4 86.3 0 58.8 82.0 84.4 93.7 93.0 93.3 0 99.8 0 103.6 0 100.3 0 91.1 80.6 97.7 101.8 98.1 96.6
13.75m/s 104.8 0 0 0 0 0 81.2 99.1 97.3 97.2 103.2 102.8 101.1 96.5 94.8 98.5 0 78.5 94.2 88.4 94.6 95.3 92.9 0 105.4 105.5 0 0 103.2 91.6 97.0 99.4 101.1 103.7 98.9 97.9
≥ 14m/s 105.7 0 0 0 0 0 72.4 94.1 102.0 102.5 103.6 105.2 104.5 95.3 95.2 103.7 86.4 88.0 98.2 97.3 98.5 97.6 86.9 103.7 105.8 0 106.0 102.6 102.2 105.1 91.3 98.7 101.9 103.9 102.6 100.2

Table 7.2: Matrix containing the standard deviation relative to the average power output of the wind farm depending on the wind conditions
0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦ 180◦ 190◦ 200◦ 210◦ 220◦ 230◦ 240◦ 250◦ 260◦ 270◦ 280◦ 290◦ 300◦ 310◦ 320◦ 330◦ 340◦ 350◦

3.25m/s 0.3 0.8 0.2 0.2 0.3 0.5 0.3 0.3 0.6 0.2 0.1 0.4 0.7 0.4 0.2 0.3 0.4 0.3 0.3 0.2 0.3 0.3 0.2 0.3 0.4 0.4 0.3 0.4 0.4 0.3 0.3 0.4 0.4 0.2 0.4 0.4
3.75m/s 0.3 0.8 0.6 0.4 0.8 1.2 0.4 0.6 0.7 0.6 0.8 1.1 1.1 0.7 0.7 0.4 1.0 0.8 0.5 0.5 1.0 0.7 0.9 0.8 1.2 1.1 0.8 1.2 0.9 1.0 0.9 0.9 0.6 0.7 0.7 0.6
4.25m/s 0.8 1.5 1.0 0.7 0.8 1.1 1.6 1.2 1.0 1.3 2.0 2.3 0.8 1.6 1.3 1.4 1.4 1.4 1.0 0.9 1.4 1.4 1.5 1.9 2.3 2.0 1.8 2.2 2.0 2.0 1.7 1.2 1.3 1.4 1.0 1.0
4.75m/s 1.2 2.4 1.5 2.1 0.7 1.6 2.1 2.2 0.6 2.5 2.1 2.4 2.3 2.4 2.6 2.2 2.1 1.9 1.7 1.7 1.5 1.9 2.3 2.7 2.1 2.0 2.1 2.3 5.4 2.4 2.0 1.7 1.9 1.6 1.4 1.2
5.25m/s 1.9 2.1 2.6 3.2 1.3 2.2 3.1 2.2 2.7 2.6 3.2 2.6 2.8 2.9 3.3 2.6 2.5 2.9 2.2 2.3 2.4 2.4 2.9 2.6 3.0 2.7 2.4 2.7 2.9 1.9 2.4 3.0 2.3 2.3 2.2 2.4
5.75m/s 2.6 2.7 2.0 3.9 4.6 2.3 2.4 3.6 1.6 3.9 4.2 2.9 4.1 3.1 3.4 3.6 2.7 3.3 2.4 3.4 2.9 2.8 2.9 4.5 2.2 3.1 3.0 3.7 13.5 3.9 2.6 3.2 3.3 2.5 2.8 3.0
6.25m/s 3.8 3.3 4.7 5.0 4.1 5.5 2.7 5.2 3.6 3.0 4.6 3.3 4.5 4.7 4.1 4.2 3.8 3.7 2.8 2.9 4.2 4.5 3.6 5.0 4.1 3.1 3.1 3.7 4.0 11.2 3.5 4.4 4.0 4.5 3.0 3.6
6.75m/s 2.7 3.9 3.4 2.2 3.9 3.5 0.3 4.2 4.2 4.6 6.0 4.5 6.9 6.2 3.7 4.2 5.1 5.0 5.3 4.5 5.6 4.7 3.5 3.9 4.2 4.5 4.9 4.0 12.5 3.9 4.2 5.1 4.1 4.2 3.0 3.5
7.25m/s 4.6 3.6 4.2 4.7 2.8 7.6 6.6 4.7 6.1 5.8 5.8 6.5 6.7 6.5 5.6 5.2 5.8 5.5 5.7 5.2 7.2 5.8 4.9 5.5 3.8 4.6 16.7 5.7 6.5 7.6 5.2 5.8 5.1 5.4 4.5 3.6
7.75m/s 5.4 5.9 9.0 5.5 7.6 9.0 2.1 4.5 4.2 6.7 7.1 5.6 7.4 11.2 5.7 5.8 7.0 6.4 6.1 6.5 6.6 6.0 6.4 7.0 6.2 6.4 5.0 7.2 16.3 5.5 6.0 5.0 4.9 4.7 3.8 4.1
8.25m/s 4.8 6.2 4.9 12.5 0.0 8.3 5.1 6.2 6.2 9.4 9.0 9.8 6.1 8.4 6.5 6.7 7.9 6.9 6.8 7.0 7.3 7.7 5.9 6.9 10.2 3.2 4.5 9.6 5.8 6.7 5.0 6.9 5.6 4.8 6.4 5.7
8.75m/s 6.5 11.9 6.5 12.0 0.0 5.8 6.4 8.2 11.0 11.1 10.3 9.6 10.4 9.7 7.7 7.0 8.3 8.7 8.4 10.6 8.5 9.3 7.6 7.8 7.8 8.7 9.0 12.1 7.9 9.8 10.2 9.9 7.4 8.3 8.2 6.9
9.25m/s 8.1 6.9 0.0 10.5 9.4 10.5 11.9 7.9 8.3 12.2 11.5 13.2 12.1 14.3 18.2 10.0 11.3 9.1 8.2 10.6 10.2 11.9 7.8 9.0 6.8 8.5 3.1 12.0 10.2 14.6 10.3 9.7 8.6 7.0 8.8 5.2
9.75m/s 8.7 8.2 NaN 0.0 12.9 10.9 13.8 9.8 13.4 13.3 10.8 13.6 15.2 15.3 13.2 11.2 8.5 11.9 9.3 11.2 10.0 11.9 9.8 11.3 11.3 6.7 11.3 12.7 11.6 8.6 11.4 9.9 9.7 12.3 10.3 6.5
10.25m/s 7.0 7.9 6.2 0.0 6.1 5.6 10.8 14.0 11.7 14.9 13.4 12.2 13.8 10.4 10.2 11.2 15.6 15.8 12.6 13.7 14.0 16.8 10.7 14.5 12.5 13.4 0.8 10.6 12.3 24.5 11.6 7.1 8.5 11.6 10.6 8.4
10.75m/s 10.1 12.7 12.7 0.0 25.9 5.6 11.6 12.4 15.3 16.8 13.0 9.8 17.2 13.5 13.1 14.5 3.0 13.8 15.6 16.6 14.2 15.2 12.5 8.1 11.7 10.0 0.3 7.4 0.0 0.0 9.6 8.3 10.1 10.1 11.9 12.1
11.25m/s 17.0 9.0 5.8 0.0 16.8 17.5 14.7 10.2 16.4 15.3 16.1 11.3 16.8 18.0 17.2 15.4 10.4 16.2 17.6 16.5 16.2 17.2 10.8 6.4 13.2 NaN 0.0 3.1 NaN 12.1 7.6 9.7 9.9 9.3 11.1 10.1
11.75m/s 7.5 5.6 NaN NaN 35.1 28.6 17.8 13.0 12.4 16.8 14.0 10.0 15.6 7.8 17.8 25.9 8.9 11.3 16.7 17.7 16.1 16.7 14.8 20.9 2.3 NaN 4.3 2.8 NaN 23.2 3.6 9.7 8.8 8.6 8.3 7.8
12.25m/s 3.4 NaN NaN NaN NaN 5.8 18.8 6.3 13.2 13.8 10.8 11.6 13.6 9.1 2.9 0.0 3.8 13.5 17.0 16.8 17.3 13.8 15.2 0.5 0.0 0.0 0.0 NaN NaN 22.9 5.5 9.4 5.9 7.0 8.4 6.8
12.75m/s 4.4 0.0 NaN NaN NaN 12.9 15.3 11.2 9.5 14.6 9.8 8.6 10.8 5.2 3.2 NaN 5.4 14.9 15.9 15.2 13.0 13.3 13.0 NaN NaN 16.6 0.0 0.0 NaN NaN 2.5 11.5 6.8 9.2 7.6 8.0
13.25m/s 5.5 NaN NaN NaN NaN NaN 13.8 13.7 8.4 13.0 6.6 3.6 6.5 4.1 16.9 0.0 NaN 14.1 12.4 12.9 12.7 11.8 9.5 NaN 7.5 NaN 0.0 NaN 0.0 NaN 0.0 37.1 7.2 6.2 8.2 7.3
13.75m/s 2.4 NaN NaN NaN NaN NaN 1.1 8.2 7.1 11.3 2.9 2.8 5.4 2.8 8.5 5.8 NaN 4.7 11.6 14.0 10.5 12.2 2.8 NaN 0.0 0.0 NaN NaN 0.8 15.6 0.0 2.4 5.0 2.6 9.0 6.2
≥ 14m/s 0.3 NaN NaN NaN NaN NaN 1.9 13.1 8.3 6.1 5.2 1.5 1.8 4.7 5.6 0.8 9.9 5.9 8.8 8.7 7.9 9.8 15.9 0.0 0.5 NaN 0.2 1.9 4.0 1.5 9.2 3.7 3.5 2.3 4.0 7.1
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Table 7.3: Matrix containing the coefficient of variation of the average power output of the wind farm depending on the wind conditions
0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦ 180◦ 190◦ 200◦ 210◦ 220◦ 230◦ 240◦ 250◦ 260◦ 270◦ 280◦ 290◦ 300◦ 310◦ 320◦ 330◦ 340◦ 350◦

3.25m/s 111% 140% 114% 136% 156% 124% 110% 220% 166% 90% 70% 131% 93% 123% 77% 93% 99% 91% 94% 71% 97% 86% 74% 114% 141% 133% 121% 90% 92% 78% 101% 151% 93% 67% 108% 169%
3.75m/s 37% 94% 97% 66% 122% 112% 107% 106% 75% 113% 86% 110% 67% 70% 78% 70% 102% 89% 75% 69% 77% 78% 77% 85% 94% 105% 72% 64% 73% 93% 91% 91% 67% 85% 67% 79%
4.25m/s 55% 102% 57% 63% 72% 78% 90% 151% 63% 83% 88% 68% 46% 72% 68% 78% 71% 79% 65% 61% 66% 65% 61% 66% 78% 74% 67% 48% 60% 60% 58% 48% 58% 59% 60% 62%
4.75m/s 37% 59% 45% 71% 39% 71% 61% 56% 16% 62% 63% 48% 54% 53% 55% 56% 55% 60% 62% 48% 43% 49% 49% 47% 34% 33% 34% 38% 88% 40% 37% 40% 49% 41% 39% 41%
5.25m/s 32% 40% 63% 62% 31% 40% 59% 38% 52% 41% 49% 38% 46% 41% 49% 44% 41% 53% 46% 46% 39% 34% 36% 31% 34% 30% 30% 34% 38% 23% 30% 43% 29% 32% 39% 46%
5.75m/s 31% 30% 30% 53% 48% 27% 30% 38% 19% 47% 47% 31% 44% 34% 34% 44% 35% 40% 33% 46% 36% 28% 28% 39% 20% 25% 25% 32% 101% 31% 22% 34% 33% 26% 35% 38%
6.25m/s 34% 30% 39% 44% 43% 41% 21% 47% 32% 27% 33% 31% 38% 45% 32% 34% 37% 36% 33% 28% 34% 36% 25% 29% 25% 20% 21% 24% 28% 66% 24% 32% 30% 32% 26% 30%
6.75m/s 17% 25% 26% 15% 26% 28% 2% 24% 24% 27% 32% 26% 41% 43% 30% 26% 41% 41% 46% 33% 35% 28% 18% 19% 19% 23% 25% 22% 58% 20% 21% 25% 23% 25% 20% 24%
7.25m/s 22% 18% 24% 18% 13% 41% 38% 23% 31% 27% 24% 32% 34% 31% 27% 28% 36% 36% 35% 32% 32% 26% 20% 21% 15% 18% 61% 23% 28% 29% 20% 22% 22% 25% 23% 19%
7.75m/s 21% 24% 43% 18% 49% 44% 9% 18% 16% 32% 27% 23% 32% 45% 24% 25% 33% 38% 28% 31% 25% 23% 23% 21% 20% 21% 15% 24% 56% 17% 18% 16% 17% 18% 15% 19%
8.25m/s 16% 21% 14% 43% 0% 32% 19% 22% 20% 31% 26% 29% 20% 31% 27% 24% 34% 32% 30% 24% 25% 23% 17% 17% 32% 9% 13% 27% 18% 17% 12% 18% 17% 14% 23% 20%
8.75m/s 17% 36% 16% 41% 0% 21% 21% 27% 31% 27% 25% 24% 32% 31% 28% 23% 32% 36% 26% 32% 24% 24% 19% 18% 18% 21% 21% 24% 22% 26% 21% 22% 19% 20% 22% 20%
9.25m/s 20% 14% 0% 44% 32% 38% 30% 22% 20% 28% 24% 28% 31% 34% 39% 24% 28% 27% 23% 26% 25% 26% 16% 17% 13% 19% 6% 24% 22% 26% 17% 17% 18% 15% 20% 12%
9.75m/s 16% 14% NaN 0% 39% 27% 31% 22% 27% 26% 20% 25% 30% 33% 25% 28% 22% 27% 23% 25% 19% 23% 18% 19% 21% 13% 21% 22% 16% 13% 20% 16% 17% 23% 19% 14%
10.25m/s 11% 12% 10% 0% 18% 14% 25% 28% 21% 24% 20% 19% 25% 20% 17% 22% 34% 35% 28% 26% 25% 29% 17% 21% 20% 22% 1% 18% 18% 42% 18% 10% 13% 18% 17% 16%
10.75m/s 14% 17% 17% 0% 49% 13% 22% 21% 22% 24% 17% 14% 29% 22% 21% 26% 7% 29% 28% 27% 22% 22% 18% 10% 15% 14% 0% 10% 0% 0% 13% 11% 13% 14% 17% 20%
11.25m/s 22% 11% 6% 0% 32% 35% 24% 15% 20% 20% 20% 14% 24% 25% 28% 26% 23% 29% 26% 23% 23% 23% 13% 7% 16% NaN 0% 4% NaN 15% 9% 12% 11% 11% 13% 14%
11.75m/s 8% 6% NaN NaN 56% 40% 27% 17% 14% 21% 16% 11% 20% 9% 23% 40% 14% 20% 22% 22% 21% 21% 17% 24% 3% NaN 4% 3% NaN 27% 4% 11% 9% 10% 9% 9%
12.25m/s 4% NaN NaN NaN NaN 11% 29% 7% 15% 15% 11% 13% 16% 10% 4% 0% 6% 19% 21% 20% 21% 16% 17% 1% 0% 0% 0% NaN NaN 32% 6% 10% 6% 7% 9% 8%
12.75m/s 5% 0% NaN NaN NaN 21% 17% 13% 10% 15% 10% 9% 12% 6% 4% NaN 7% 20% 20% 17% 14% 15% 14% NaN NaN 18% 0% 0% NaN NaN 2% 12% 7% 9% 8% 9%
13.25m/s 6% NaN NaN NaN NaN NaN 15% 15% 9% 14% 6% 4% 7% 4% 19% 0% NaN 24% 15% 15% 14% 13% 10% NaN 8% NaN 0% NaN 0% NaN 0% 46% 7% 6% 8% 8%
13.75m/s 2% NaN NaN NaN NaN NaN 1% 8% 7% 12% 3% 3% 5% 3% 9% 6% NaN 6% 12% 16% 11% 13% 3% NaN 0% 0% NaN NaN 1% 17% 0% 2% 5% 3% 9% 6%
≥ 14m/s 0% NaN NaN NaN NaN NaN 3% 14% 8% 6% 5% 1% 2% 5% 6% 1% 11% 7% 9% 9% 8% 10% 18% 0% 0% NaN 0% 2% 4% 1% 10% 4% 3% 2% 4% 7%

Table 7.4: Greatest difference between the average power output and any of the measurements as a function of the wind conditions
0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦ 180◦ 190◦ 200◦ 210◦ 220◦ 230◦ 240◦ 250◦ 260◦ 270◦ 280◦ 290◦ 300◦ 310◦ 320◦ 330◦ 340◦ 350◦

3.25m/s 0.6 1.6 0.5 0.3 0.8 1.1 0.6 0.8 1.1 0.4 0.2 1.1 1.5 1.2 0.4 0.6 1.4 0.8 0.7 0.3 1.0 0.8 0.4 1.4 1.2 1.3 0.8 1.0 1.4 0.7 0.9 2.0 0.9 0.4 1.4 1.7
3.75m/s 0.6 1.6 1.4 0.7 2.0 2.8 1.0 1.7 1.3 1.7 1.9 2.5 1.7 1.3 1.8 0.7 3.4 3.9 1.5 1.6 2.7 1.7 2.1 2.7 3.7 3.4 2.2 2.4 2.9 3.7 3.3 2.7 1.3 2.8 1.8 1.6
4.25m/s 1.4 3.0 2.6 1.8 2.6 2.5 3.3 3.3 3.4 2.9 5.6 4.4 1.5 4.4 4.9 2.9 3.9 4.5 2.0 3.0 4.5 5.3 3.9 5.0 6.1 3.6 4.6 4.1 3.9 4.0 3.9 2.5 4.5 4.7 2.2 3.0
4.75m/s 2.3 4.6 2.8 3.2 1.2 3.2 4.2 6.0 1.0 5.5 4.8 5.2 5.5 9.1 5.4 4.5 5.0 7.1 5.7 4.0 3.7 5.2 5.0 5.7 4.8 4.1 4.4 5.7 35.8 5.4 4.5 4.5 3.7 3.5 3.0 2.3
5.25m/s 4.1 4.5 3.5 4.5 2.4 5.0 5.3 5.0 3.8 5.7 10.1 5.8 9.1 6.4 7.0 5.7 8.1 8.7 4.6 6.6 7.6 5.5 6.2 7.0 5.8 6.7 5.9 5.2 7.0 4.4 6.1 6.8 6.5 4.9 6.1 8.3
5.75m/s 6.1 7.2 2.6 4.3 5.1 3.8 4.9 7.8 3.3 10.8 9.0 8.2 7.8 7.4 8.3 10.7 5.9 9.6 4.8 12.9 6.6 6.3 7.8 9.3 5.1 6.0 9.2 8.9 72.6 8.7 7.2 6.9 10.0 5.3 5.8 6.6
6.25m/s 9.7 7.4 8.1 6.8 5.7 8.9 4.4 8.8 8.5 7.7 10.6 6.1 10.6 11.5 11.0 11.9 9.2 10.0 5.6 6.5 14.2 10.0 7.4 12.0 14.3 8.1 6.8 8.3 9.4 67.7 8.2 11.4 12.3 11.3 7.8 8.2
6.75m/s 5.9 6.7 6.0 3.0 7.5 4.9 0.2 7.2 11.7 9.1 17.8 9.2 16.6 13.8 8.4 8.6 9.6 11.0 14.0 11.2 14.0 12.3 7.5 7.2 10.4 8.6 9.7 8.9 67.2 11.3 9.1 11.7 13.5 8.7 9.7 9.3
7.25m/s 8.9 6.8 5.9 5.4 3.1 10.7 15.7 13.1 11.6 10.1 13.7 17.2 15.4 12.7 15.1 14.2 12.2 10.2 13.1 11.3 17.3 17.9 9.9 15.4 8.3 8.2 67.2 11.4 13.4 16.7 11.8 17.6 11.7 14.4 9.1 8.7
7.75m/s 10.8 10.8 13.3 6.0 9.3 13.3 6.3 8.6 8.7 15.8 18.7 13.6 16.3 18.9 10.6 10.7 16.4 18.5 15.5 16.9 18.0 18.7 17.8 18.9 13.7 15.8 7.6 11.9 67.0 11.4 13.4 10.7 11.6 10.7 9.5 8.6
8.25m/s 9.1 9.4 3.5 15.5 0.0 13.6 9.7 9.6 11.6 20.7 17.4 24.7 16.3 15.7 15.8 14.7 15.2 17.3 16.1 18.6 17.9 18.1 15.4 15.7 17.2 7.8 7.3 17.2 8.6 15.3 10.4 16.5 12.5 9.6 12.1 13.6
8.75m/s 16.0 20.3 9.6 12.6 0.0 10.5 11.0 18.0 20.1 21.6 21.6 21.9 24.3 19.1 12.8 11.4 16.3 19.7 26.7 26.2 28.0 21.2 17.9 20.0 14.2 21.7 16.9 14.2 16.2 20.0 21.2 23.2 14.9 22.1 17.7 31.0
9.25m/s 19.4 10.3 0.0 12.1 11.5 15.4 27.6 13.0 16.9 23.7 20.4 21.8 28.3 30.7 23.6 12.7 23.2 16.2 19.6 27.9 25.0 22.6 21.8 20.8 12.0 21.4 6.1 16.4 11.8 18.9 18.2 22.5 22.2 18.2 19.3 10.6
9.75m/s 15.6 12.3 NaN 0.0 12.6 15.9 32.8 22.8 33.4 29.7 28.3 24.9 26.6 28.4 20.7 14.9 14.6 21.4 24.8 32.4 23.1 31.4 19.8 25.9 19.1 10.2 12.7 14.6 23.6 10.9 17.5 25.0 23.4 32.8 24.2 15.3
10.25m/s 16.9 18.3 6.9 0.0 7.2 7.2 18.9 30.7 32.8 28.8 27.1 32.1 31.0 18.5 12.6 20.3 19.7 31.0 33.2 28.3 35.0 32.7 35.3 40.0 26.8 34.4 0.6 14.3 16.4 27.0 18.9 20.8 21.3 38.0 35.2 15.4
10.75m/s 26.0 39.9 17.5 0.0 24.3 8.0 24.3 27.4 26.3 37.3 27.1 29.7 32.3 21.5 18.8 20.4 2.1 25.0 30.6 34.7 33.3 33.0 33.3 24.1 29.4 11.5 0.2 7.8 0.0 0.0 22.3 17.6 26.4 38.8 37.8 24.3
11.25m/s 51.9 10.4 6.5 0.0 43.1 46.4 30.8 16.3 29.6 25.3 30.8 25.5 30.0 35.0 22.7 20.1 19.7 31.8 39.3 33.6 32.7 36.9 23.1 12.2 33.0 NaN 0.0 2.2 NaN 18.1 18.4 24.1 31.7 30.6 29.1 23.2
11.75m/s 19.5 6.4 NaN NaN 24.8 32.0 35.2 29.6 25.4 38.7 31.6 30.4 32.0 15.9 26.6 29.9 10.0 21.2 41.9 36.8 37.3 33.8 42.5 46.8 1.6 NaN 3.0 1.9 NaN 26.6 4.7 32.7 26.2 31.4 27.3 17.0
12.25m/s 6.5 NaN NaN NaN NaN 12.4 36.6 11.0 29.1 33.1 33.5 23.6 32.8 19.0 4.4 0.0 4.8 28.9 35.4 33.4 39.7 33.0 31.1 0.4 0.0 0.0 0.0 NaN NaN 16.2 5.9 14.1 17.7 21.2 29.2 13.4
12.75m/s 9.0 0.0 NaN NaN NaN 24.7 16.7 16.1 21.4 45.4 46.1 27.2 34.2 13.5 3.1 NaN 6.4 26.4 43.0 32.8 38.9 42.8 26.7 NaN NaN 11.7 0.0 0.0 NaN NaN 1.8 20.1 21.3 33.6 18.7 15.7
13.25m/s 11.2 NaN NaN NaN NaN NaN 19.6 18.8 20.4 37.5 23.8 9.7 11.3 5.9 11.9 0.0 NaN 18.2 17.3 27.4 39.0 29.3 22.9 NaN 8.4 NaN 0.0 NaN 0.0 NaN 0.0 42.7 20.9 23.4 22.9 21.1
13.75m/s 9.1 NaN NaN NaN NaN NaN 1.2 15.3 13.8 39.0 7.8 8.6 15.9 5.9 9.8 6.3 NaN 5.3 30.3 37.2 38.9 38.3 3.3 NaN 0.0 0.0 NaN NaN 1.2 21.3 0.0 2.8 11.9 10.7 33.0 16.0
≥ 14m/s 0.6 NaN NaN NaN NaN NaN 3.1 24.0 37.2 40.3 23.4 6.9 8.1 5.7 8.8 0.9 13.3 7.4 25.9 26.9 37.2 33.3 18.3 0.0 0.5 NaN 0.1 3.2 11.6 1.7 19.3 4.7 8.5 8.4 25.0 29.5
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The results shown in Table 7.1 are indicating the power production of the wind farm in MW . The

cases in which the power is reported to be equal to 0 represent those particular conditions of wind speed

and direction that never occurred during the 6 months considered for the creation of the empirical power

model. The data with wind speed ≥ 14m/s has been collected all in one single bin because in the vast

majority of the directions all the turbines should be working at or close to the nominal wind speed. Also,

given the short period of time available to be used it was thought that using a higher number of velocity

bins would only have created additional empty slots.

In addition to these results, the standard deviation σ relative to each wind condition has also been

estimated. The results relative to σ are reported in Table 7.2, where the standard deviation is reported

in MW . In this case, the boxes indicating a 0 are the ones in which the data reported in Table 7.1 was

the average of a single number and therefore the number itself. On the other hand, the ones displaying

NaN identify the wind conditions that never happened in the time interval analysed. By comparing the

global power output and the relative standard deviation it can be noted how in some cases the value of

σ is extremely elevated (sometimes even more than the power output itself).

To better analyse this aspect, σ was divided by the power output to which it refers in order to find

the coefficient of variation. The outcome of these calculations is shown in Table 7.3. The value of the

coefficient of variation seems to be higher for lower power outputs, while for higher values it is not as

high and actually acceptable. Another way to study the variability of the power production depending on

the wind conditions is to check the value of the greatest difference between the average condition (the

one indicated in Table 7.1) and any of the power measurements for that wind speed and that direction.

These differences are exposed in Table 7.4, where again the values are reported in MW . It can be seen

how the difference increases almost constantly with the wind speed, but if compared to the average

value the lower velocities have a higher relative value. These last three tables are used to highlight once

again the strong variability of the wind within a limited amount of time, like 10 minutes.

7.2 Results of the Predictions

Since this model does not allow to make any comparison relative to the wind field, the only possibility to

check its validity is through the prediction of the remaining 3 months. When making the predictions, the

model was able to recognise when the conditions used as input were some that never occurred during

the training. In case of such an occurrence, the time slot was neglected because it would have been

impossible to predict. The time slots here analysed are the same as in Section 5.8, while in Appendix D

the prediction of the entire 3 months is reported. The error used to check the validity of the prediction is

again the Mean Absolute Error (MAE), defined previously in Section 5.8 in equation (5.6).

In Figure 7.1, the results of the prediction relative to the first week of October 2016 are shown. These

results do not look as good as the ones of the empirical model (Figure 5.5), especially when the power

output is higher. However, the empirical power model seems to be pretty accurate at the lower power

outputs. The MAE of the empirical model is lower than the one estimated for the empirical power model,

and the reason is the better accuracy at high outputs. The values of the two MAEs are similar, though.
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Figure 7.1: Comparison between measurements and results of the empirical power model relative to the
power output during the 1st week of October 2016

The comparison between the prediction and the measurements collected on 26/10/2016 is reported

in Figure 7.2. The date is the same as the one predicted in Figure 5.6 and by comparing the two it is

possible to note that in this case the prediction is more accurate and the MAE is lower for the empirical

power model. This happened because the power output is pretty low and, as mentioned before, in this

case the empirical power model seems to perform better than the empirical one.

Figure 7.2: Comparison between measurements and results of the empirical power model relative to the
power output on 26/10/2016

In Figure 7.3, the prediction from the empirical power model is compared with the actual data for

the day 27/11/2016. The prediction seems pretty satisfactory and better than the one obtained with the

empirical model (Figure 5.7). Again, the Mean Absolute Error is lower (804.9377kWh vs 1072.1154kWh).

From the comparison of the two predictions, it seems that the empirical model is better at forecasting
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Figure 7.3: Comparison between measurements and results of the empirical power model relative to the
power output on 27/11/2016

the fluctuations. This probably happens because the empirical model actually uses the value of the

maximum wind speed in the calculations, while the empirical power model uses it only to select a value

within a matrix. Because of this reason, if the maximum wind speed and the wind direction do not

vary much, the empirical power model might easily predict the same value as in the previous time slot.

From the sole analysis of this time slot, the empirical power model model seems to be better at not

overpredicting the spikes in power production.

Figure 7.4: Difference between the prediction of the empirical power model and the measurements on
27/11/2016

Like in Section 5.8, in addition to the comparisons between prediction and measurements the evo-

lution of the absolute value of the difference between the two during one day is analysed. The day that

has been chosen is the same as before (27/11/2016) so that it is possible to see the differences between
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the two models. The comparison between Figure 7.4 and Figure 5.8 perfectly highlights the problem of

the empirical model with the overprediction of spikes. The first thing that is noted is the great difference

in the spike, which is significantly lower in Figure 7.4 and therefore for the empirical power model. How-

ever, the lower difference between results of the empirical power model and the measurements can be

easily seen for the vast majority of the day. Nonetheless, the better performance of the empirical model

during the last hours of the day 27/11/2016, when the output increases, can be easily noted. Comparing

the two graphs highlights once more how the empirical power model is better for lower outputs, while the

empirical one performs better when the power produced is higher.

By comparing the global results of the empirical model and of the empirical power model (Appendix

C and Appendix D, respectively) it can be seen how the MAEs of the latter are lower during all of the

3 months. Therefore it looks like the empirical power model might perform better than the empirical

one. However, this might happen because of the season forecasted. Maybe, if winter months had been

predicted the results of the empirical model would have been the better ones because of higher wind

speeds and consequently, higher power outputs.

7.3 Possible Improvements

The possible way to improve this model are mainly the same ones as for the empirical model (Section

5.11). One of the possible improvements is to recreate this model when more data will be available. It

will be possible to have an average value that better represents the actual conditions and also all the

possible combinations of wind speed and direction will most probably have occurred. By having a higher

amount of data available, the fluctuations typical of the seasons will not affect the results of the model in

a significant way.

The other ways to improve the model and its results are relative to the variability of the wind. A way

to have it to less influence the results is to include it in the model in a statistical way, perhaps based on

the wind conditions of the previous time slots. The other possibility is to use shorter time intervals. In

such a case, the mean wind speed would better represent the temporal evolution of the wind during the

time gap and therefore, the variable and stochastic nature of the wind would affect less the final results.

7.4 Conclusions to the Chapter

In this chapter a third and final model was exposed: the empirical power model. In this model, a database

of possible scenarios based on wind speed and direction was built. If a specific situation happened

again, the power output would be assumed to be the same. This model can be applied in an easier

way as the final result is a matrix reporting the average power output depending on the wind speed and

the wind direction. Also, the standard deviation, the coefficient of variability and the highest measured

difference are reported in order to highlight once again the variability of the wind and explain one of

the reasons why the model did not predict the output more accurately. Afterwards, three separate time

slots are predicted and analysed. The results of these predictions are compared with the outcomes of
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the simulations using the empirical model and the main differences between them are highlighted. By

analysing the values of the coefficients of variability and the Mean Absolute Errors it can be noted how

these values could be used even when not all the turbines are operating, as the error introduced by this

aspect should be significantly smaller than the one that already happens. The main differences between

the models are the tendency of the empirical model at predicting spikes in the power production even

though they do not happen, its better performance when the output is higher and at reproducing small

fluctuations and the better forecasts by the empirical power model when the production is low. In the

end, a few possible ways to improve the model are suggested. This last model, on the contrary of the

others, thanks to the creation of Table 7.1 allowed to produce something that could turn out to be useful

for the wind farm management team.
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Chapter 8

Conclusions

The work conducted in this project included several different subjects and topics and it allowed to im-

prove the relative skills and learn new ones. Unfortunately, the results obtained were not completely

satisfactory as for the vast majority of the times they lacked consistency. Among the main topics studied

in the project, the ones that led to the best outcomes are the study of the empirical and empirical power

model. In some cases, they presented good results however, in others the difference between the out-

comes of the models and the measurements was significant. For this reason, it can be stated that the

models as they are are not good enough to precisely predict the output of the wind farm.

The creation of the physical model was the topic that obtained the poorest results. In this case, the

model failed significantly in predicting the wind speed experienced by the turbines because the only

aspect considered was the interception between wakes and rotors. Because of this lack of aspects

considered, the deficits obtained were often underestimated or not present at all. Because of this failure,

the empirical model was formulated using a completely different approach. As it has already been

stated, the empirical model obtained better results compared to the ones of the physical model. Another

aspect which failed to reach its goal is the creation of a set of equations that would have allowed the wind

farm management team to know the output of each turbine knowing the conditions of the wind entering

the wind farm. Probably, one of the main causes of this failure is the presence of too many points to

reproduce with the equations. If the number of angular sectors had been lower, probably it would have

been possible to find a pattern between the parametres and the direction. However, the results obtained

from this set of equations would have been worse than the outcome of the model because a further step

in the creation of the model had been introduced.

In an attempt to decrease the error in the results of the model, a third model directly predicting the

power output based on wind speed and direction was formulated. The product of the empirical power

model was a table (Table 7.1) indicating the power output in MW according to the wind velocity (which

identifies the row) and direction (which indicates the column). The results of this model were better than

the ones of the empirical model for low power output, but worse when the value is higher. Comparing

the results of the two models in Appendix C and Appendix D, the empirical power model obtains lower

MAEs in all of the 3 months.
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One interesting aspect highlighted by the work exposed in this thesis is represented by the shortcom-

ings of the Jensen model. Even though it is still widely used in the industry, it fails to predict the velocity

deficit at the location of the turbines. Therefore, it is not suitable to predict the output of the wind farm

if working on its own without considering further phenomena. If included in a wider model incorporating

several other aspects it might work, but not as used in this project. However, another reason why the

Jensen model failed might be the layout of the wind farm. In fact, usually the wake models work better

in case of a regular layout.

A small achievement of the project is the one of having identified the wind turbines that fail to collect

correct measurements and the main aspect where they fail at. Fixing the anemometers present on those

turbines would allow to have a bigger and more reliable set of data for possible future work. Also, if these

measurements are currently used in any way, being able to correct possible errors might translate into

more stable operating conditions.

In spite of the partial lack of results in the main topics exposed in the thesis, there is still a good

potential to find a proper model to predict the output of the wind farm with a higher accuracy. As exposed

previously, the approach that seems to be the best one in the case of this wind farm is the statistical one

using empirical data from the turbines themselves. Using some additional aspects typical of statistics, it

would be possible to have the results of the models exposed in Chapter 5 and Chapter 7 vary depending

on some of the conditions in the previous time slots. Also, it could be possible to include other inputs to

the model in order to make it more precise. However, this possibility would add complexity to the model

and maybe to the creation of the set of equations or of the table as well.

The use of a set of equations to predict the output instead of a power curve for the whole wind farm

might seem an improvement as it allows not to consider the wind turbines that at the moment are not

working for different reasons. However, analysing the table obtained from the empirical power model, it

was noted that the variability of and the error in the results are higher than the ones that would be added

by not considering a turbine. Consequently, the results obtained for all the turbines might be used also

to predict the output when a single turbine is not working. Related to this fact, it is important to add that

being the models based on predictions, which will never be absolutely precise, the error will always be

present and it will not be possible to avoid it.
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Appendix A

Finding of the Point T

Figure A.1 is the general case of Figure 3.5 and it can help in understanding the calculations. In this

case the two turbines do not experience wind blowing from the same direction and therefore, the rotors

are not parallel.

Figure A.1: Graphical simplification of the general case of interception between wake and rotor

Point T is found as the interception between the line of the rotor of Turbine 2 and the line indicating

the wind direction. The angular coefficient mx is used to indicate the direction of the wind at the turbine

x, which therefore in this case in equal to either 1 or 2. The coordinates x2 and y2 indicate the location

of the nacelle of turbine 2 in the 2D coordinate system centred at the hub of turbine 1.

y − y2 = − 1
m2

(x− x2)

y = m1 · x
(A.1)

− 1

m2
(x− x2) + y2 = m1 · x1 (A.2)
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− x

m2
+
x2
m2

+ y2 = m1 · x (A.3)

x

(
m1 +

1

m2

)
=

x2
m2

+ y2 (A.4)


xT =

x2
m2

+y2

m1+
1

m2

yT = m1 · xT = m1 ·
x2
m2

+y2

m1+
1

m2

(A.5)

The two equations in (A.5) allow to locate point T in the coordinate system. In the case of the physical

model (explained in Chapter 3) the wind blows always in the exact same direction for all the turbines and

therefore there is just a single angular coefficient m. By substituting m1 and m2 with m, the equations in

(3.2) are obtained.

The red line in Figure A.1 represent the distance at which the deficit should be calculated in case the

assumption of parallel rotors is not valid anymore. A system of equations able to find the interception

between the red line and the direction of the wind passing through turbine 1 would be much more

complicated and tough to implement in the whole model as all the particular cases should have been

taken into account.
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Appendix B

2D k Jensen Model

The traditional Jensen model has been found to have two major limitations, the top-hat profile and the

constant value of the wake decay parametre. About the former aspect, it has been found that the

deficit does not depend only on the downwind distance (it is therefore not a 1D model), but also on

the crosswind one. Along this direction, the velocity deficit varies following a Gaussian or trigonometric

distribution. On the other hand, the latter issue is raised because the wake decay coefficient k should

be related to the overall turbulence (dependent on the roughness length), which is equal to the sum of

both the ambient and turbine-added turbulences.

The 2D k Jensen model [47] is implemented in two different steps. Initially, the speed deficit is

estimated using the original Jensen model and then its value is corrected depending on the crosswind

distance from the centreline. In order to do so, the value of the wake decay coefficient has to be

previously estimated using equation (B.1):

k = k0
εwake

ε0
(B.1)

where ε0 is the ambient turbulence, εwake is the effective turbulence and k0 is the constant value of

the wake decay coefficient, 0.04 for offshore sites and 0.075 for onshore ones [4]. Since the effective

turbulence is greater than the ambient one, the resulting wake is wider and characterised by a faster

recovery than the one obtained using the original Jensen model.

According to the most-widely used turbulence models, εwake is given by the combination of the at-

mospheric turbulence and the turbine-added turbulence, ε0 and εadd respectively.

εwake =
√
ε20 + ε2add (B.2)

The turbine-added turbulence εadd is best defined according to the Larsen model [11]. The definition

given in (B.3) is valid for distances greater than 2D, which does not create problems as the 2D k Jensen

model is also valid for the far wake region.

εadd = 0.29

(
x

D

)− 1
3
√

1−
√

1− CT (B.3)
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Figure B.1: Behaviour of the wake turbulence intensity ratio downstream of the rotor according to the
Larsen model [41]

In Figure B.1, the ratio between εwake and ε0 in case of an initial value for ε0 equal to 8% and

CT = 0.78 is shown. From Figure B.1 it can be noted how for the first several diameters of downstream

distance the turbine-added turbulence affects the value of εwake. Towards the end it can be seen how

the value of ε0 decreases to 0 and consequently the effective turbulence reaches the same value of the

ambient turbulence.

After having estimated the wake decay coefficient k, the wind speed according to the original Jensen

model, indicated as u∗, is calculated. As a next step, the wind speed at the required location can be

computed taking into account the crosswind distance from the centreline. According to the 2D k model,

the distribution along the crosswind direction follows the behaviour of a cosine. The wind velocity at the

required location is found according to equation (B.4):

u = (U∞ − u∗) · cos

(
π

rx
· r + π

)
+ u∗ , (B.4)

where r is the distance from the centreline and rx is the radius of the wake at the downstream

distance x calculated using k found with equation (B.1).

rx = R+ k · x (B.5)

In Figure B.2 the expansion of the wake and the behaviour of the velocity deficit behind the rotor of
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the turbine is shown. The difference in results from the original Jensen model can be clearly seen by

comparing Figure B.2 with Figure 2.1.

Figure B.2: Expansion of the wake behind the turbine according to the 2D k Jensen model [47]
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Appendix C

Results of the Energy Production

Prediction for the Empirical Model

In this appendix, the results relative to the 3 months simulated with the empirical model and their com-

parisons with the measurements are shown. Also, the evolutions of the absolute value of the difference

between the measurements and the results of the empirical model are exposed.
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Figure C.1: Comparison between the results of the model and the measurements for October 2016 according to the empirical model
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Figure C.2: Comparison between the results of the model and the measurements for November 2016 according to the empirical model
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Figure C.3: Comparison between the results of the model and the measurements for December 2016 according to the empirical model
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Figure C.4: Difference in absolute terms between the prediction and the measurements for October 2016 according to the empirical model
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Figure C.5: Difference in absolute terms between the prediction and the measurements for November 2016 according to the empirical model
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Figure C.6: Difference in absolute terms between the prediction and the measurements for December 2016 according to the empirical model
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Appendix D

Results of the Energy Production

Prediction for the Empirical Power

Model

In this appendix, the results relative to the 3 months simulated with the empirical power model and their

comparisons with the measurements are shown. In addition to this, the differences between the value

predicted and the measurement throughout each month are reported
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Figure D.1: Comparison between the results of the model and the measurements for October 2016 according to the empirical power model
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Figure D.2: Comparison between the results of the model and the measurements for November 2016 according to the empirical power model
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Figure D.3: Comparison between the results of the model and the measurements for December 2016 according to the empirical power model
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Figure D.4: Difference in absolute terms between the prediction and the measurements for October 2016 according to the empirical power model
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Figure D.5: Difference in absolute terms between the prediction and the measurements for November 2016 according to the empirical power model
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Figure D.6: Difference in absolute terms between the prediction and the measurements for December 2016 according to the empirical power model
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